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Abstract. A new construction of semi-free actions on Menger manifolds is
presented. As an application we prove a theorem about simultaneous coexis-
tence of countably many semi-free actions of compact metric zero-dimensional
groups with the prescribed fixed-point sets: Let G be a compact metric zero-
dimensional group, represented as the direct product of subgroups Gi, M a µn-
manifold and ν(M) (resp., Σ(M)) its pseudo-interior (resp., pseudo-boundary).
Then, given closed subsets Xi, i ≥ 1, of M , there exists a G-action on M such
that (1) ν(M) and Σ(M) are invariant subsets of M ; and (2) each Xi is the
fixed point set of any element g ∈ Gi \ {e}.

0. Introduction

The following remarkable theorem was proved by Iwamoto [11]:

Theorem (0.1). Let G be a compact metric zero-dimensional group, M a µn-
manifold and ν(M) (resp. Σ(M)) its pseudo-interior (resp., pseudo-boundary).
Then for every closed subset X of M , there exists a semi-free G-action on M such
that X is the fixed-point set of every element g ∈ G \ {e}, and ν(M) and Σ(M)
are invariant subsets of M .

This theorem is a significant generalization of the Dranishnikov free action the-
orem [8] and Sakai’s results [13], [14]. In the present paper we give a new construc-
tion of semi-free actions, and prove a simultaneous coexistence of countably many
semi-free actions of compact metric zero-dimensional groups with the prescribed
fixed-point sets.

Theorem (0.2). Let G be a compact metric zero-dimensional group, represented
as the direct product

∏
Gi of subgroups Gi, M a µn-manifold and ν(M) (resp.,

Σ(M)) its pseudo-interior (resp., pseudo-boundary). Then, given closed subsets
Xi, i ≥ 1, of M , there exists a G-action on M such that:

(1) ν(M) and Σ(M) are invariant subsets of M ; and
(2) each Xi is the fixed-point set of every element g ∈ Gi \ {e} ⊂

∏
Gi .

Recall that an action of G on a space X is a homomorphism T : G→ AutX of
the group G into the group AutX of all autohomeomorphisms of X , such that the
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map G×X → X , given by (g, x) 7→ T (g)(x) = g ·x, is continuous. A space X with
a fixed action of G is called a G-space.

A subset A ⊂ X (resp., a point a ∈ X) is said to be invariant (resp., fixed) if
G ·A = {g · a | g ∈ G, a ∈ A} = A (resp., G · a = a). A G-space X is said to be free
(resp., semi-free) if g · x 6= x, for every x ∈ X and g 6= e (resp., g · x 6= x, for every
nonfixed point x and g 6= e).

The proof of Theorem (0.2) is presented in detail only for the case of the Menger
compactum µn. By Pontryagin’s theorem [12], each Gi can be considered as a

closed subgroup of the product
∞∏
k=1

Hik of nontrivial finite groups with the following

property: Every nontrivial element gi = (gik) ∈ Gi has infinitely many nontrivial
coordinates.

Next, fix the Cantor compactum C = µ0 with the pseudo-interior ν = ν(µ0)
and the pseudo-boundary Σ = Σ(µ0). The key to the construction of the desired
semi-free action lies in the canonical surjection

r : In ×H × C → µn, where H =
∏
i

Hi and Hi =
∏
k

Hik,

and a discontinuous action Ψ of H on In ×H × C such that:

(3) the restriction of Ψ on Gk ⊂ Hk is a discontinuous semi-free action with
respect to r−1(Xk);

(4) Ψ(h, (x, u, v)) = (x, u′, v), where h ∈ H,x ∈ In, u ∈ H, v ∈ C (i.e. Ψ changes
only the middle coordinate);

(5) r(In ×H × ν) is the pseudo-interior ν(µn) and r(In ×H ×Σ) is the pseudo-
boundary Σ(µn);

(6) r−1(m) is a rectangle subset of In ×H × C, for every m ∈ µn; and
(7) Φ(h, r(x, u, v)) = r(x, u′, v), where (x, u′, v) = Ψ(h, (x, u, v)), is a continuous

action of H on µn, and the restriction of Φ on Gk is a continuous semi-free
action with respect to Xk.

The proof of Theorem (0.2) in the general case (for an arbitrary µn-manifold) is
analogous to the special case of µn and will be discussed in the last chapter.

1. Preliminaries

All spaces are assumed to be separable metric and all maps to be continuous.
Recall that a space X is said to be (k − 1)-connected (Ck−1) if the homotopy
group πi(X) is trivial, for every i < k. A space X is said to be locally (k − 1)-
connected (LCk−1) if for every x ∈ X and every neighborhood U 3 x, there exists a
neighborhood V 3 x with the property that every map α : Si = ∂Bi+1 → V, i < k,
extends to α̃ : Bi+1 → U .

By the Kuratowski-Dugundji theorem [5], X ∈ LCk−1 ∩Ck−1 (resp., X ∈ LCk−1)
if and only if X ∈ AE(k), i.e. X is an absolute extensor in dimension k (resp.,
X ∈ ANE(k), i.e. X is an absolute neighborhood extensor in dimension k). A fam-
ily {Xα} of sets Xα ⊂ X is said to be equi-LCk−1 if for every x ∈

⋃
Xα and every

neighborhood U 3 x, there exists a neighborhood V 3 x with the property that ev-
ery partial map Z ←↩ A f→ V ∩Xα, dimZ ≤ k, extends to g : Z → U ∩Xα, g|A = f .
The following criteria are convenient for verification of connectivity properties of
spaces (cf. [1] and [4], respectively):
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Proposition (1.1). Let {Zα} be a closed cover of the compactum Z. Then the
following assertions hold:

(a) Z ∈ AE(n) if and only if for every neighborhood U(z) of z ∈ Z, there exists
a neighborhood V (z) (if U(z) = Z then we require V (z) = Z), such that for every
map ϕ : Sk → V (z), k < n, and for every ν > 0, there exists a map ψ : Bk+1 → Z,
with (ϕ, ψ |Sk) < ν.

(b) {Zα} ∈ equi-LCn−1, if and only if for every neighborhood U(z) of z ∈ Z,
there exists a neighborhood V (z), such that for every map ϕ : Sk → V (z)∩Zα, k < n,
and for every ν > 0, there exists a map ψ : Bk+1 → U(z) ∩Zα with (ϕ, ψ |Sk) < ν.

Proposition (1.2). Let P = {pα} be a closed cover of an ANE(r)-compactum Z
and suppose that pα1∩pα2∩· · ·∩pαt 6= ∅ implies pα1∩pα2 ∩· · ·∩pαt ∈ AE(r+1−t),
for every t ≤ r. Then Z ∈ AE(r) if and only if the nerve N〈P〉 of P is (r − 1)-
connected.

We shall need the following three results of Bestvina [3].

Theorem (1.3). A locally compact space X is µk-manifold if and only if X ∈
ANE(k), dimX = k and X has the disjoint k-disks property, namely X ∈ DDk P.
If, in addition, X is a compact AE(k), then X is homeomorphic to the Menger
universal compactum µk.

Theorem (1.4). For every µk-manifold Mk, there exists a PL manifold R of di-
mension ≥ 2k + 1 with a triangulation L and a proper map f : R(k) → M which
induces isomorphisms of homotopy groups of dim < k and homotopy groups of ends
of dim < k (here R(k) is the k-skeleton with respect to L).

Theorem (1.5). Let f : M1 → M2 be a proper map between µk-manifolds which
induces isomorphisms of homotopy groups of dim < k and homotopy groups of ends
of dim < k. Then f is properly (k − 1)-homotopic to a homeomorphism.

Let M be a µk-manifold. By ZM , we shall denote the collection of all Z-sets
in M . A ZM -absorber A of M is called the pseudo-boundary Σ(M) of M and
the complement M \ A is called the pseudo-interior ν(M) of M . The topological
types of the pseudo-boundaries and the pseudo-interiors of M are unique [2]. The
following criterion was proved in [7].

Proposition (1.6). Let {Ai}∞i=1 be an increasing sequence of Z-sets in a µk-
manifold M with the following properties:

(1) for every ε > 0, there exists m > 0 such that Am is ε-dense in M ;
(2) each Ai is a Z-set in Ai+1;
(3) {Ai}∞i=1 is equi-LCk−1 and
(4) Ai is a µk-manifold.

Then
∞⋃
i=1

Ai is a pseudo-boundary of M .

The pseudo-boundary and the pseudo-interior of the zero-dimensional Menger
manifold C = µ0 can be described in the following manner:

Definition (1.7). (5) A subset R ⊂
s∏
i=1

Ti, 1 ≤ s ≤ ∞, is called a rectangle, if

R =
s∏
i=1

T ′i , where T ′i ⊂ Ti for every i.
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(6) A rectangle subset R1 =
s∏
i=1

T ′i is said to have an infinite codimension in

a rectangle subset R2 =
s∏
i=1

T ′′i , whenever R1 ⊂ R2 and the set {i ∈ N |

T ′′i \ T ′i 6= ∅} is infinite.

Proposition (1.8). Let C =
∞∏
i=1

Ti be the Cantor compactum. Then there exists a

sequence of rectangle subsets R1 ⊂ R2 ⊂ . . . such that

(7) Ri ∼= C for every i;
(8) every Ri has infinite codimension in Ri+1; and

(9) R =
∞⋃
i=1

Ri is a dense subset in C .

According to Proposition (1.6), R is the pseudo-boundary of C.

2. The canonical decomposition of In ×
∏
Ti

Let us consider a partition ∆m,m ≥ 1, of the unit segment I, determined by the
subset δm = { 2i−1

2m |0 < i ≤ 2m−1}. The product ∆m × · · · ×∆m︸ ︷︷ ︸
n

= (∆m)n of the

partitions ∆m is a partition of the cube In = I × · · · × I︸ ︷︷ ︸
n

into (2m−1 + 1)n cubes of

diameter ≤
√
n · 21−m. The union Fm of all boundaries of these cubes satisfies the

following properties:

(1) Fm = {x = (x1, . . . , xn) ∈ In|xi ∈ δm, for some i} ; and
(2) for every x ∈ In, the set {m|x ∈ Fm} has less than n+ 1 elements.

Fix a sequence {Ti, i ≥ 1} of finite sets Ti with |Ti| > 1, and construct (in a
canonical way) an upper semi-continuous decomposition T of Q = In ×

∏∞
i=1 Ti.

The quotient space P = Q/T , generated by T , will have properties (3)-(5) below:

(3) P is compact and dimP = n;
(4) P satisfies the disjoint n-disks property (DDnP ); and
(5) P ∈ Cn−1 ∩ LCn−1.

By Theorem (1.3), P and the Menger compactum µn are homeomorphic. Let

x ∈ In and t = (ti)mi=1 ∈
m∏
i=1

Ti, 1 ≤ m ≤ ∞. (Convention: m + 1 = ∞ in case

m = ∞.) Let us denote Ti(x, t) = ti, if x 6∈ Fi; Ti(x, t) = Ti, if x ∈ Fi, and

T (x, t) =
m∏
i=1

Ti(x, t).

Proposition (2.1). The family Tm = {x×T (x, t)|x ∈ In, t ∈
m∏
i=1

Ti}, 1 ≤ m ≤ ∞,

yields an upper semi-continuous decomposition of Qm = In ×
m∏
i=1

Ti:

(6) for every (x0, t0) and ε > 0, there exists δ > 0 such that dist((x, t), (x0, t0)) <
δ implies αH(x×T (x, t), x0×T (x0, t0)) < ε (here αH(A,B) = inf{γ > 0|A ⊂
N(B; γ)} is the Hausdorff deflection; cf. [10, p. 98, (7.7.1)]).
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Proof. By definition, it is evident that
(7) x × T (x, t) ∩ x′ × T (x′, t′) 6= ∅ ⇐⇒ x = x′ and ti = t′i for all i < m + 1

such that x 6∈ Fi ⇐⇒ x × T (x, t) ≡ x′ × T (x′, t′) (we use a convention that
m+ 1 =∞ in case m =∞).

Fix x0 ∈ In, t0 ∈
m∏
i=1

Ti and ε > 0. Let us choose δ > 0 and a finite number p ≤ m

such that
(8) dist(x, x′) < δ and the coincidence of the first p coordinates of t and t′ implies

dist((x, t), (x′, t′)) < ε/2 ;
(9) dist((x, t), (x′, t′)) < δ implies the coincidence of the first p coordinates of t

and t′ and, naturally, dist(x, x′) < δ; and
(10) δ < min{dist(x0, Fi)|x0 6∈ Fi, i ≤ p}.
Let dist((x, t), (x0, t0)) < δ. It easily follows from (9) and (10) that dist(x, x0) < δ,
the first p coordinates of t and t0 coincide and Ti(x, t) ⊂ Ti(x0, t), for every i ≤ p.
Then αH(x × T (x, t), x0 × T (x0, t)) < ε/2 by (8). The coincidence of the first
p coordinates of t and t0 implies αH(x0 × T (x0, t), x0 × T (x0, t0)) < ε/2. Hence
it follows that αH(x × T (x, t), x0 × T (x0, t0)) ≤ αH(x × T (x, t), x0 × T (x0, t)) +
αH(x0 × T (x0, t), x0 × T (x0, t0)) < ε.

Corollary (2.2). For every 1 ≤ m ≤ ∞, the following assertions hold:
(a) the quotient space Pm = Qm/Tm is a compactum; and
(b) if m <∞, then the map pm : Pm → Pm−1, defined by setting

pm(rm(x, (t1, . . . , tm))) = rm(x, (t1, . . . , tm−1)),

is well-defined and continuous and the following diagram is commutative:

Qm
rm−−−−→ Pm

qm

y ypm
Qm−1

rm−1−−−−→ Pm−1

where qm is the projection on Qm−1 = In ×
m−1∏
i=1

Ti.

For m = ∞ we have the map r : Q = In ×
∞∏
i=1

Ti → P = P∞. Clearly, P is the

limit of the inverse system {P1
p2← P2

p3← P3
p4← . . . }. Since rm has finitely many

fibers for m < ∞, it follows that dimPm = dimQm = n. Since the dimension of
the limit of the inverse system of n-dimensional spaces is less than or equal to n,
we have dimP ≤ n.

Proposition (2.3). dimP = n and P ∈ DDnP .

Proof. Every a ∈ Tm+1 naturally generates the embedding sm,a : Pm → Pm+1 of Pm
into Pm+1 defined by sm,a(rm(x, t)) = rm+1(x, t′), where t′ = (t, a). It is evident
that sm,a is a section of pm+1. Hence P contains a copy of Pm with dimPm = n.
Therefore, dimP = n.

One can easily conclude from (2) that the images of the following compositions
are disjoint:

Im(sm+n,am+n+1 ◦ · · · ◦ sm,am+1) ∩ Im(sm+n,a′m+n+1
◦ · · · ◦ sm,a′m+1

) = ∅,
for every am+n+1 6= a′m+n+1, . . . , am+1 6= a′m+1. Consequently, P satisfies DDnP .
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Remark (2.4). If R′ is a rectangle subset of infinite codimension in a rectangle
subset R′′ of

∏
Ti, then P ′ = r(In × R′) is a Z-set in P ′′ = r(In × R′′) and

P ′′ ∈ DDn P.

In the next section we shall prove that P ′′ ∈ AE(n); so it will follow by the
Bestvina theorem (1.3) that P ′′ is homeomorphic to the Menger compactum µn.

3. Connectivity properties of subsets of P

Let the factor Tp, p < m + 1, be represented as the disjoint union T ′p
∐
T ′′p

(we assume m + 1 = m for m = ∞). By replacing Tp with T ′p, we obtain the
decomposition T ′m of Q′m = In × T ′p×

∏
{Ti|i < m+ 1, i 6= p}, 1 ≤ m ≤ ∞, and the

quotient map r′m : Q′m → P ′m = Q′m/T ′m. The decomposition T ′′m of the space Q′′m
and the map r′′m : Q′′m → P ′′m are defined analogously. Note that Q′m

∐
Q′′m = Qm.

It is clear that rm(Q′m) = P̂ ′m ⊂ Pm and rm(Q′′m) = P̂ ′′m ⊂ Pm are naturally
homeomorphic to P ′m and P ′′m, respectively.

Proposition (3.1). P̂ ′m ∩ P̂ ′′m = rm(Fp ×
m∏
i=1

Ti).

Definition (3.2). An index of x ∈ I (briefly indx) is defined to be i ∈ N, if x ∈ δi,
and ∞, if x 6∈ δj for every j. An index of b = (b1, . . . , bn) ∈ In is defined to be
ind(b) = {ind(bi)|i ≤ n} ⊂ N ∪ {∞}.

Let J be a closed segment from the partition ∆m,m < ∞. If J ⊂ Int I, then
there exists a unique point b′ ∈ J with ind(b′) < m (b′ is the midpoint of J). If
J ∩ {0, 1} = b′, then J does not contain points with index less than m. We define
Ind(J) = ind(b′) in the first case and Ind(J) =∞ in the second one. In both cases
point b′ is said to be the center of J . Let J = [2k+1

2m , 2k+3
2m ] ∈ ∆m. Then Ind(J) < m

and b′ = 2k+2
2m is the center of J .

The partition (∆m)n of In yields new partitions Q′m of Qm = In ×
m∏
i=1

Ti and

Qm of Q = In ×
∞∏
i=1

Ti defined as follows:

Q′m = {E ′ = J × T (b, t)|J =
n∏
i=1

Ji ∈ (∆m)n, b = (bi) ∈ In,

t ∈
m∏
i=1

Ti, each bi is the center of Ji}

and Qm = {E ′×
∞∏

i=m+1

Ti|E ′ ∈ Q′m}. The partitions Qm of Q and Q′m of Qm consist

of regular closed subsets.

Theorem (3.3). Let E ′ = J × T (b, t) be an arbitrary element of the partition
Q′m,m < ∞, and Jp1...pw = J ∩ Fp1...pw 6= ∅, where 1 ≤ p1 < · · · < pw ≤ s, s ≥
m, 0 ≤ w ≤ n, and

Fp1...pw =


w⋂
k=1

Fpk if w ≥ 1;

In if w = 0.
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Then for every rectangle subset R =
s∏
i=1

T ′i with the property (∗):

“|T ′i | > 1 implies i ≥ m or i ∈ ind(b)”,

the compactum X = rs(Jp1...pw ×R) is a nonempty AE(n− w).

Corollary (3.4). Let E ′ = J × T (b, t) ∈ Q′m,m < ∞, and m ≤ p1 < · · · < pw ≤
s, 0 ≤ w ≤ n. Then for rectangle subsets R1 ⊂

m∏
i=1

Ti and R2 ⊂
s∏

i=m+1

Ti, the

compactum rs(Jp1...pw × (T (b, t) ∩R1)×R2) is a nonempty AE(n− w).

The following preliminary facts precede the proof of Theorem (3.3). Let us
consider a finite set A represented as the disjoint union A1

∐
· · ·
∐
Aw. We shall

study the connectivity properties of the subpolyhedron K = Kv
A1...Aw

, v ≤ w, of
the (|A| − 1)-dimensional simplex ∆: K =

⋃
{〈a1 . . . av〉| 〈a1 . . . av〉 is a (v − 1)-

dimensional simplex spanned by the vertices ak ∈ Aik , 1 ≤ k ≤ v, where ik 6= ik′ if
k 6= k′}.

Lemma (3.5). Kv
A1...Aw

∈ Cv−2 for each v ≤ w.

Proof. We now proceed by induction on θ = e ·w + f + v, where e = max |Ai|, f =
|{i : |Ai| = e}|. It is evident that θ′ = e′ · w′ + f ′ + v′ < θ if e′ < e and
w′ ≤ w, v′ ≤ v or e′ ≤ e, f ′ < f and w′ ≤ w, v′ ≤ v.

The basis of the induction corresponds to θ = 1 · v + v + v = 3v. In this case K
is the (v−1)-skeleton of ∆, which is (v−2)-connected. The same is valid for e = 1.

Assume the validity of the lemma for all θ′ < θ. Suppose, without loss of
generality, that |A1| = e > 1 and A1 = A′1

∐
A′′1 , |A′1| ≤ |A′′1 | < e. By the inductive

hypothesis (θ′ < θ and θ′′ < θ), Kv
A′1A2...Aw

and Kv
A′′1A2...Aw

are (v − 2)-connected
and their intersection

Kv
A′1A2...Aw

∩Kv
A′′1A2...Aw

= Kv
A2...Aw ∪K

v−1
A2...Aw

=

{
Kv
A2...Aw

if w ≥ v;
Kv−1
A2...Aw

if w = v ≥ 2.

By the Van Kampen and the Mayer-Vietoris argument [15], Kv
A1A2...Aw

∈ Cv−2.

Lemma (3.6). Let J =
n∏
i=1

Ji ∈ (∆m)n, b= (bi) ∈ In, each bi is the center of Ji,

and Jp1...pw 6= ∅ for 1 ≤ p1 < · · · < pw, 0 ≤ w ≤ n. Then Jp1...pw ∈ AE(n− w).

Proof. Let πi : In → I be the projection onto the ith factor. Then

Fp1 =
n⋃
k=1

∐
q∈δp1

Πk,q ,where Πk,q = π−1
k (q) = {(x1, . . . , xn) ∈ In|xk = q}.

Hence Jp1...pw =
n⋃
k=1

∐
{Π′k,q|q ∈ Ak}, where Π′k,q = J ∩Πk,q ∩Fp2...pw , Ak = {q ∈

δp1 |Π′k,q 6= ∅}. It is easy to see that Jp1...pw 6= ∅ implies pk ≥ m or pk ∈ ind(b), for
every k ≤ w.

We shall omit the proof of the following fact which easily follows from the note
mentioned above:

Lemma (3.7).
r⋂
i=1

Π′kiqi 6= ∅ for every k1 < k2 < · · · < kr, 0 ≤ r ≤ v = n + 1 −
w, qi ∈ Aki .
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We now proceed by induction on σ = n+ w. The basis of induction is obvious.
Assume the validity of the lemma for all σ′ < σ. Then Π′k,q ∈ AE((n−1)− (w−1))
and moreover, for every k1 < k2 < · · · < kr, 0 ≤ r ≤ v = n+1−w, qi ∈ Aki , we have
r⋂
i=1

Π′kiqi = (J∩
r⋂
i=1

Πkiqi)∩Fp2∩· · ·∩Fpw ∈ AE((n−r)−(w−1)) = AE((n−w+1)−r)

(since
r⋂
i=1

Πkiqi is an (n−r)-dimensional cube, parallel the (n−r)-dimensional plane

{(x1, . . . , xn)|xki = 0, i ≤ r} and J ∩
r⋂
i=1

Πkiqi is a nonempty element of (∆m)n−r).

Hence the intersections of the Πkiqi ’s are correctly connected (in the sense
of Bestvina [3]) and their nerve coincides with Kv

A1...An
= Kn+1−w

A1...An
, which is

AE(v − 1) = AE(n− w) by Lemma (3.5).
To complete the proof we apply Proposition (1.2) to the cover {Π′kq} of Fp1...pw .

Proof of Theorem (3.3). We prove by induction on θ = s · e + f − w, where e =
max{|T ′i | : 1 ≤ i ≤ s}, f = |{i : |T ′i | = e, 1 ≤ i ≤ s, }| (e, f, s and w are variables).
Let us note that θ′ = s′ · e′ + f ′ − w′ < θ provided e′ = 1, s′ = m, f ′ = m and
w′ = n or e′ = e, s′ = s, f ′ < f and w′ = w or e′ < e, s′ = s and w′ = w or
e′ = e, s′ = s, f ′ = f and w′ = w.

If e = 1, then each |Ti| = 1, i > m, and therefore Xp1...pw
∼= Jp1...pw which is

AE(n− w) by Lemma (3.6). Hence the basis of the induction is verified.
Assume the validity of Theorem (3.3) for all θ′ < θ and let e > 1. Pick i0 ≤ s

with |T ′i0 | = e and represent T ′i0 = T̂i0
∐
Ťi0 , |T̂i0 | ≤ |Ťi0 | < e. Then Xp1...pw is the

union of

Y ′ = X ′p1...pw = rs(Jp1...pw × R̂) ⊂ P̂ ′s and

Y ′′ = X ′′p1...pw = rs(Jp1...pw × Ř) ⊂ P̂ ′′s ,

where the rectangle subsets R̂ and Ř coincide with the rectangle subsets R ∩
(
∏
i6=i0

Ti × T̂i0) and R ∩ (
∏
i6=i0

Ti × Ťi0), which satisfy the property (∗) (for nota-

tion see the beginning of Section 3). By the inductive hypothesis (θ′ ≤ θ′′ < θ),
we have Y ′,Y ′′ ∈ AE(n − w). Let us prove that Y ′ ∩ Y ′′ ∈ AE(n − w − 1). It
will then follow by the Van Kampen and the Mayer-Vietoris argument [15], that
Xp1...pw = Y ′ ∪ Y ′′ ∈ AE(n− w).

The proof splits naturally into two parts: i0 ∈ {p1 . . . pw} and i0 6∈ {p1 . . . pw}.
Part (1). i0 6∈ {p1 . . . pw}. In this case, Y ′ ∩ Y ′′ ∼= rs(Jp1...pwi0 × R). Since

w′ = w + 1 and e′ = e, s′ = s, f ′ = f , the inductive variable θ′ for Y ′ ∩ Y ′′ is less
than θ. By the inductive assumption Y ′ ∩ Y ′′ ∈ AE(n− w − 1).

Part (2). i0 ∈ {p1 . . . pw}. This implies that Y ′ = rs(Jp1...pw × R̂) ∼=
rs(Jp1...pw ×R) = Xp1...pw . Hence Xp1...pw ∈ AE(n− w).

Theorem (3.8). Let R be the family of all rectangle subsets R ⊂
∞∏
i=1

Ti. Then

(a) PR = r(In ×R) is an AE(n), for every R ∈ R; and
(b) {PR = r(In ×R)|R ∈ R} is an equi-LCn−1-family.

Proof. (a) Fix a point (x, t) ∈ In×R and r(x, t) = z. For every ε > 0, it is possible
to choose a number m ≥ 1 and an element E ′ = J × T (b, t) ∈ Q′m such that
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(1) the neighborhood U = N(z, ε)∩PR of z in PR contains a closed neighborhood
V = r(J × (T (b, t) ∩ R1) × R2 × R3) of z in PR, where R is represented as

the product R1 × R2 × R3, R1 =
m∏
i=1

T ′i , R2 =
s∏

i=m+1

T ′i and R3 =
∞∏

i=s+1

T ′i (s

is a sufficiently large number).
By Corollary (3.4), Vs = rs(J ×(T (b, t)∩R1)×R2) ⊂ Ps is AE(n) for every s. Pick
an arbitrary constant ν > 0 and s such that IdP and the projection p∞s are ν-close.
Since Ps is naturally embedded into P (cf. Proposition (2.3)), we can consider Vs as
a subset of V . Now let ϕ : Sk → V, k < n, be an arbitrary map. The composition
p∞s ◦ ϕ : Sk → Vs, which is ν-close to ϕ, is extended on ψ : Bk+1 → Vs ↪→ V . By
Proposition (1.1a), PR ∈ AE(n).

(b) The proof is analogous to (a), because the choice of the constant ν > 0 does
not depend on the choice of the family {PR}.

Corollary (3.9). P = r(Q) ∈ AE(n) (and hence, by Section 2, is also homeo-
morphic to µn).

4. Construction of the action of the zero-dimensional

compact group G on P

By Pontryagin’s theorem [12], every compact metric zero-dimensional group Gi

can be considered as a closed subgroup of the product
∞∏
k=1

Hik of nontrivial finite

groups Hik with the following property:
(1) every nontrivial element gi = (gik) ∈ Gi has infinitely many nontrivial coor-

dinates.

Let us identify some factors of Q = In×
∞∏
i=1

Ti with finite groups: Hkl ≡ Tmkl , 1 ≤

k, l <∞, such that N can be represented as a disjoint union of {mkl|k, l} and some

infinite subset. Therefore,
∞∏
i=1

Ti is represented as the product of D =
∏
k,l∈N

Tmkl and

the Cantor compactum C. According to Proposition (1.8), there exists a sequence
R1 ⊂ R2 ⊂ . . . of rectangle subsets on C, satisfying (1.8)(7)-(9). Then D × R1 ⊂
D × R2 ⊂ . . . is the sequence of the rectangle subsets of D × C also satisfying
(1.8)(7)-(9).

By Theorem (3.8), {r(In × D × Ri)} is an equi-LCn−1-family of the Menger
compactum P . By Remark (2.4), each {r(In×D×Ri)} is a Z-set in r(In×D×Ri+1).

Since
∞⋃
i=1

r(In×D×Ri) is a dense subset of P , it follows by Proposition (1.6) that

the pseudo-boundary Σ(P ) coincides with
∞⋃
i=1

r(In ×D ×Ri).

To construct a semi-free action Φ of G ⊂ H on P as in Theorem (0.2), we
first define a discontinuous action Ψ of H on Q. Let N(B,Qm) be the star of a

subset B ⊂ Q with respect to the partition Qm = {E ′ ×
∞∏

i=m+1

Ti|E ′ ∈ Q′m} of

Q = In ×
∞∏

i=m+1

Ti. Note that N(B,Qm) is a closed neighborhood of B and

(2)
∞⋂
m=1

N(B,Qm) = r−1r(B); and
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(3) if (x, u, v) ∈ Bd(N(B,Qm)), then ind(x) = m.
Let Bk = r−1(Xk) ⊂ In×D×C. Now the action Ψ of H on Q is defined by setting
for h = (hkl) ∈ H and z = (x, u, v) ∈ In ×D × C,

(4) Ψ(h, z) = (x, u′, v), where u′ = (u′mkl) and

u′mkl =

{
umkl if (x, u, v) ∈ Int(N(Bk,Qmkl)),
hkl·umkl otherwise.

It is obvious that
(5) r(In ×D ×A) is an invariant subset for every A ⊂ C.

Let (x, u, v) 6∈Bk and g = (gkl)∈Gk\{e}. SinceMk={mkl|(x, u, v)∈N(Bk,Qmkl)}
is finite, whereas G = {l|gkl 6= e} is infinite, we have

(6) Bk is the fixed-point set for every g = (gkl) ∈ Gk\{e}.
Next the action Φ of H on P is defined by Φ(h, r(x, u, v)) = r(Ψ(h, (x, u, v))). As
the preimage r−1(z) is a rectangle subset x × T (x, t) of Q, the action Φ is well-
defined. It follows from (5)-(6) and the formula for Φ that Σ(P ) and ν(P ) are
invariant subsets and Xk is the fixed-point set for every g ∈ Gk\{e}.

To complete the proof of Theorem (0.2), we need the following fact:

Proposition (4.1). The action Φ : G× P → P is continuous.

Proof. It suffices to verify that for every (x0, t0) ∈ Q, ε > 0 and g0 ∈ G, there exist
a neighborhood O(g0) of g0 and δ > 0, such that dist((x, t), (x0 , t0)) < δ implies
αH(g · (x× T (x, t)), g0 · (x0 × T (x0, t0))) < ε, for every g ∈ O(g0).

We shall use the upper semi-continuity of the decomposition T (Proposition
(2.1)). Let us choose δ > 0 and p ∈ N, satisfying (8)-(10) in Section 2, and
a neighborhood O(g0) of g0 such that the first p coordinates of every element
g ∈ O(g0) coincide. Then it follows that g · (x × T (x, t)) = x × T (x0, g · t) and
αH(x× T (x, g · t), x0 × T (x0, g0 · t0)) < ε, analogously to the proof of Proposition
(2.1).

5. Epilogue

Let M be a µk-manifold. By Theorem (1.4), there exist a PL manifold R of
dimension ≥ 2k+ 1 with a triangulation L, and a proper map f : R(k) →M which
induces isomorphisms of homotopy groups of dim < k and of homotopy groups of
ends of dim < k, where R(k) = |L(k)|, L(k) is the k-skeleton of L. If R(k) would
admit a cubical triangulation, then by applying Sections 2-4 word-by-word, we
could construct the map r : R(k) ×

∏
Ti → (R(k) ×

∏
Ti)/T = Nk into Nk, which

by Theorem (1.3) is a µk-manifold. The natural projection π′ : R(k)×
∏
Ti → R(k)

generates the proper retraction π : Nk → R(k), which would induce isomorphisms
of homotopy groups of dim < k and of homotopy groups of ends of dim < k. The
composition f ◦ π would then be a proper map between µk-manifolds which would
induce isomorphisms of homotopy groups of dim < k and of homotopy groups of
ends of dim < k. By Theorem (1.5), f ◦π would be properly (k−1)-homotopic to a
homeomorphism and therefore (R(k)×

∏
Ti)/T would be homeomorphic to Mk. As

in Section 4, we could construct the desired action of
∏
Gi on N = (R(k)×

∏
Ti)/T .

Problem (5.1). Is every simplicial complex homeomorphic to a complex which
admits a cubical triangulation?
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Without referring to the solvability of this problem, we give an outline of the
proof of Theorem (0.2) in the case of µk-manifold M . To this end, we consider the
handlebody decomposition Hm = {St(v;βm+2L) | v ∈ (βm+1L)(0)} of R(k) accord-
ing to βmL, where βmL is the mth barycentric subdivision of the triangulation L
and (βm+1L)(0) are the vertices of the (m+ 1)-st barycentric subdivision.

By Fm we denote the union of all the boundaries of all elements of the partition
Hm. Clearly, the analogue of (2) in Section 2 holds:

(1) for every x ∈ R(k), the set {m|x ∈ Fm} has less than k + 1 elements.

All assertions from Sections 2-4 go through in our case, whereas their proofs do not
differ substantially and the reader can supply the details.

Only the fact that the proper retraction π : (R(k) ×
∏
Ti)/T → R(k) induces

isomorphisms of homotopy groups of dim < k and of homotopy groups of ends of
dim < k, requires a proof. Due to the limited space we must leave the details to the
readers. However, we wish to point out that they do not significantly differ from
the techniques used in our proofs above.

As in Section 4 we can construct the desired action of
∏
Gi on (R(k)×

∏
Ti)/T ,

where
∏
Ti is chosen as

∏
Hkl × C.
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