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Abstract—It is proved that, for all n > 2 , the Banach–Mazur compactum Q(n) is the
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1. INTRODUCTION

The problem of determining the topological type of the Banach–Mazur compactum Q(n) goes
back to the Polish school in the geometric theory of Banach spaces. A. Pe�lczyński noticed that
elementary geometric arguments prove the contractibility of Q(n) . On the other hand, the Banach–
Mazur compactum is closely related to the hyperspace of all convex bodies in Rn . Taking into
account these facts and Wojdys�lawski’s problem of whether hyperspaces of a certain type are
homeomorphic to the Hilbert cube Q , Pe�lczyński stated two conjectures, which have become
widely known among topologists, especially after West’s work [1]. These are:

(1) the space Q(n) (for n ≥ 2) is an absolute retract;
and the stronger conjecture

(2) the space Q(n) (for n ≥ 2) is homeomorphic to the Hilbert cube Q .
In 1996, Fabel proved that the compact space Q(2) is an absolute retract (i.e., Q(2) ∈ AE);

the same year, it was shown [2] that Q(n) is an absolute extensor for all n ≥ 2 . Finally, in 1997,
a negative answer to the question about the existence of an isomorphism between Q(n) and the
Hilbert cube Q was obtained [3] (a short version was published in [4]; see also [5]).

Theorem 1.1. Q(2) and Q are not homeomorphic.

The key point in the proof of Theorem 1.1 is the homotopic nontriviality of Q(2)\{Eucl} , where
{Eucl} ∈ Q(n) is the Euclidean point corresponding to the isometry class of standard Euclidean n-
space. In its turn, this nontriviality follows from the nontriviality of the 4-dimensional cohomology
group H4(Q(2) \ {Eucl}, Q) with rational coefficients. Ideas from [6] were used to describe the
structure of the Eilenberg–MacLane complexes in the Banach–Mazur compactum Q(2) in [3], which
made it possible to apply fairly advanced techniques of algebraic topology, such as calculations in
cohomology rings and Smith’s theory of periodic homeomorphisms [3, p. 7]. Note that the more
recent paper [7] on Problem 2 uses such calculations1 at the key point of the proof, on p. 224.

1The paper [8] by the same author with the same title contains bad mistakes. Lemma 6 asserts the existence
of an O(2)-equivariant map which not is O(2)-equivariant. Because of this lemma, the groups SO(2) and O(2)

are identified in the proof of the main result (Theorem 4), and the question of the final factorization by the group
Z2 = O(2)/SO(2) , for which the Smith theory is employed in [4], does not even arise.
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Apparently, revealing a deeper relationship between the Banach–Mazur compacta and algebraic
topology would make it possible to go further into studying their topology, in particular, prove
that the Q(n) are not homeomorphic to the Hilbert cube for all n > 2 .

In [9], the study of Q(2) was continued; it was proved that Q(2) is the one-point compactifica-
tion of a Q-manifold, which (together with Theorem 1.1) implied its inhomogeneity. The naturally
arising problem concerning Q(n) , where n > 2 , was reduced to a certain assertion from convex
geometry, which was likely to be true. In this paper, we return to this problem and prove the
following theorem by applying the ideas of [9] to the notion of elliptic convexity.

Theorem 1.2. QE(n) � Q(n) \ {Eucl} is a Q-manifold.

2. PRELIMINARIES

Let G be a compact Lie group. By an action of G on a space X we mean a homomorphism
T : G → AutX of G to the group AutX of all autohomeomorphisms of X such that the map
G × X → X defined by (g, x) �→ T (g)(x) = g · x is continuous. A space X with a fixed action
of G is called a G-space.

The isotropic subgroup of a point x , or the stabilizer of x , is defined as Gx = {g ∈ G | g ·x = x} ;
the orbit of x is G(x) = {g · x | g ∈ G} . The space of all orbits is denoted by X/G , and the
natural map π : X → X/G defined by π(x) = G(x) is called the orbit projection. The orbit space
X/G is endowed with the quotient topology induced by π (see [10]).

Below we give one of the several equivalent definitions of the Banach–Mazur compactum Q(n)
(a detailed description of the topology of the Banach–Mazur compactum is contained in, e.g., [9,
5]). By C(n) we denote the family of all compact convex centrally symmetric (with center of
symmetry 0) bodies in Rn . Measuring the distances between subsets of Rn by the Hausdorff
metric ρH and defining linear combinations

∑n
i=0 λiAi by the Minkowski operation, we make

(C(n), ρH) into a locally compact convex space. Moreover, C(n) can be endowed with the action
of the general linear group GL(n)× C(n) → C(n) defined by

T · V = T (V ), where T : Rn → Rn ∈ GL(n) and V ∈ C(n),

which is consistent with the convex structure of C(n) . It is well known that the orbit space
C(n)/GL(n) is naturally homeomorphic to the Banach–Mazur compactum.

Recall that the Banach–Mazur compactum Q(n) = C(n)/GL(n) is also homeomorphic to the
orbit space of an action of the orthogonal group O(n) of Rn . As is known (see [11]), for any convex
body V ∈ C(n) , there exists a unique ellipsoid EV ∈ C(n) (called the Levner ellipsoid) which
contains V and has minimal Euclidean volume. The minimality of volEV implies the GL(n)-
invariance of EV ; i.e., ET ·V = T ·EV for any T ∈ GL(n) . The continuity of the dependence of EV

on V with respect to the Hausdorff metric was proved in [2]. Therefore, the map L : C(n) → E
defined by L(V ) = EV is a GL(n)-retraction of C(n) onto the “elliptic” orbit E = GL(n) · Bn ,
where Bn is the unit ball (L is called the Levner retraction). Let L(n) = L−1(Bn) be a cut
which is a compact O(n)-space. In other words, L(n) consists of those V ∈ C(n) whose Levner
ellipsoids coincide with Bn . It is easy to see that the orbit space Q(n) = C(n)/GL(n) is naturally
homeomorphic to L(n)/O(n) . Therefore, QE � Q(n)\{Eucl} coincides with LE(n)/O(n) , where
LE � L(n) \ {Bn} . Thus, Theorem 1.2 reduces to the following assertion.

Theorem 2.1. LE(n)/O(n) is a Q-manifold.

A space X is an absolute neighborhood extensor (X ∈ ANE) if any map ϕ : A → X defined
on a closed subset A of a metric space Z (it is called a partial map) can be extended to some
neighborhood U ⊂ Z of A , i.e., there exists a ϕ̃ : U → X such that ϕ̃|A = ϕ . If we can always
take U = Z , then X is an absolute extensor (X ∈ AE). For metric spaces X , the notions of an
absolute (neighborhood) extensor and an absolute (neighborhood) retract coincide. According to
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the Toruńszyk characterization theorem [12, 13], any locally compact space X ∈ ANE is locally
homeomorphic to the Hilbert cube Q (i.e., it is a Q-manifold) if and only if X admits maps
fi : X → X for i ∈ {1, 2} which are arbitrarily close to IdX and Im f1 ∩ Im f2 = ∅ .

According to [2], Q(n) ∈ AE; therefore, L(n)/O(n) ∈ AE, and QE ∼= LE(n)/O(n) ∈ ANE.
Thus, using the Toruńszyk characterization, we can easily reduce the proof of Theorem 2.1 (and,
hence, of Theorem 1.2) to proving the following assertion (see [9]).

Theorem 2.2. There exist homotopies

ft : LE(n)/O(n) → LE(n)/O(n) and gt : LE(n)/O(n) → LE(n)/O(n), 0 ≤ t ≤ 1,

such that f0 = g0 = Id and Im ft ∩ Im gs = ∅ for all 0 < s ≤ t ≤ 1 .

It is well known [14] that there exists an O(n)-retraction R : C(n) → L(n) which maps CE(n)
to LE(n) . However, we shall need a more precise statement, which follows from geometric consid-
erations.

Proposition 2.3 (see [9]). There exists a continuous O(n)-retraction R : C(n) → L(n) such that
R(V ) and V are affinely equivalent for any V ∈ C(n) .

Proof. Let T be an element of GL(n) such that T−1 · Bn = L(V ) . According to [15], the
operator T can be represented as T2 ◦ T1 , where T2 ∈ O(n) and T1 is self-adjoint. We set
R(V ) = T1(V ) and leave the verification of all the required properties to the reader. �

Let (X , d) be a metric space of diameter 1 . In [9], the erroneous formula

ρ((x, t), (x′ , t′)) =
√

t2 + (t′)2 − 2tt′ cos γ , where cos γ =
(2− d2(x, x′))

2
,

for the metric on the cone ConX was given (although, this did not affect the correctness of the
other results). The correct, slightly different, formula is largely known (see, e.g., [16, p. 91]); this
is

ρ((x, t), (x′ , t′)) =
√

t2 + (t′)2 − 2tt′ cos γ , where γ = d(x, x′).

The authors thank S. Antonyan, who kindly pointed out this inaccuracy (not affecting the contents
of [9]) in his thesis; additional information about this metric can be found in [7].

Next, we introduce a partial order on the compact Lie groups. For compact Lie groups K
and H , we set K < H if K is isomorphic to a proper subgroup of H . Clearly,

(α) if K < H , then either dimK < dimH or dimK = dimH and CK < CH , where CH is
the number of path-connected components of H .

If K is a closed subgroup of a compact Lie group H and dimK = dimH , then K is an open
subgroup. This implies the following stronger result.

(β) Let K be a closed subgroup of a compact Lie group H . If dimK = dimH and CK = CH ,
then K = H .

The verification of the following property of the order introduced above is fairly simple, and we
leave it to the reader.

(γ) There exists no countable sequence of compact Lie groups {Hi} such that

H1 > H2 > H3 > · · · > Hn > . . . .

Clearly, the pair indH = (dimH , CH) belongs to N×N . Let us endow N×N with the lexicographic
order. According to (α) , the map H �→ indH is order preserving.

From (γ) the following principle can be derived; it allows us to use induction on compact Lie
groups.
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Proposition 2.4. Let P(H) be a property depending on the compact Lie group H . Suppose that
(δ) P(H) holds for the trivial group H = {e} and
(ε) P(H) holds if P(K) holds for all K < H .

Then P(H) holds for all groups H .

As an example, in [17], the following property satisfying (δ) and (ε) was considered: P(H)
holds if, for any metric H-space X ∈ H-ANE , the orbit space X/H is an ANE.

3. PROOF OF THEOREM 2.2

Recall that a point a of a convex set V ⊂ Rn is said to be extreme if V \ {a} is convex. It is
well known that the set Extr(V ) of all extreme points of V is contained in the relative boundary
rbdV , and V coincides with the convex hull Conv(Extr(V )) . If Extr(V ) = rbd(V ) , then V is
said to be elliptically convex ; otherwise, V is not elliptically convex. Let us show that the following
two assertions, which readily imply Theorem 2.2, are valid.

Theorem 3.1. There exists an O(n)-homotopy H : L(n)× [0, 1] → L(n) such that
(a) H0 = Id and H−1

t (Bn) is contained in the set of elliptically convex bodies for all t ∈ [0, 1] ;
(b) Ht(V ) is elliptically convex for any V ∈ L(n) and t > 0 .

Theorem 3.2. There exists an O(n)-homotopy F : L(n)× [0, 1] → L(n) such that
(c) F0 = Id and
(d) Ft(V ) is not elliptically convex for any V ∈ LE(n) and t > 0 .

To prove Theorem 2.2, it is sufficient to consider the two O(n)-homotopies

F : L(n)× [0, 1] → L(n) and H ◦ F : L(n)× [0, 1] → L(n)

and pass to the orbit space.

Proof Theorem 3.1. Let V ∈ L(n) . Note that the convex body V is elliptically convex if and
only if each supporting hyperplane of V intersects V in precisely one point [15]. Thanks to this
criterion, we can relate the notion of elliptic convexity to Minkowski linear combinations.

Lemma 3.3. Suppose that V , Vi ∈ C(n) and V =
∑p

i=1 λi · Vi , where all the λi are positive.
Then V is elliptically convex if and only if Vi is elliptically convex for each i .

Proof. Let Π and Πi be parallel supporting hyperplanes of V and Vi , respectively. We set
A = V ∩Π and Ai = Vi ∩Πi . Obviously,

∑p
i=1 λi ·Ai ⊂ A . It is easy to show that if xi ∈ Vi and∑p

i=1 λi ·xi ∈ A , then xi ∈ Ai . Therefore, A =
∑p

i=1 λi ·Ai , and hence A consists of one point if
and only if each Ai consists of one point. The proof is completed by applying the above criterion
for elliptic convexity. �

We continue the proof of Theorem 3.1. Consider the homotopy ψt : Rn × [0, 1] → Rn , where
0 ≤ t ≤ 1 , defined by ψt(x) � x/(1 + t · ‖x‖) ∈ Rn . Clearly, this is a continuous homotopy and,
for any t ∈ [0, 1] ,

(1) ψt is an O(n)-homeomorphism,
(2) ψt maps any interval to a curve intersecting each ellipse in finitely many points, and
(3) ψt(V ) is an elliptically convex body (see [8, p. 95]) for any V ∈ C(n) .

It is easy to see from (1) that the continuous map

Ψ: L(n)× [0, 1] → C(n), (V , t) ∈ L(n)× [0, 1] �→ ψt(V ) ∈ C(n),

preserves the action of the group O(n) . The O(n)-homotopy H � R ◦Ψ: L(n)× [0, 1] → L(n) ,
where R is the retraction mentioned in Proposition 2.3, satisfies the requirements of Theorem 3.1;
this follows from (2)–(3). We leave the details to the reader. �
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Proof of Theorem 3.2. First, note that no additional extreme points arise in passing to the
convex hull, i.e.,

(4) Extr(ConvA) ⊂ A for any A ⊂ Rn .
Therefore, if K is finite, then ExtrConvK is also finite, and hence ConvK is not elliptically

convex. The main idea of the proof of Theorem 3.2 is to find sufficiently many nonelliptically
convex bodies in C(n) .

Lemma 3.4. Suppose that V ∈ LE(n) and H = O(n)V is the stabilizer of V . Then, for any
finite set L ⊂ BdV with 0 ∈ Int(ConvL) , W � Conv(H · L) ∈ C(n) is not elliptically convex.
Moreover, the stabilizer O(n)W contains H .

Proof. Since {± Id} ⊂ H and 0 ∈ Int(ConvL) ⊂ Conv(H · L) , we have Conv(H · L) ∈ C(n) .
Let us make the following elementary observation.

(5) If A, B ∈ C(n) and BdA ⊂ BdB , then A = B (and, therefore, BdA = BdB).
Suppose that, contrary to the assertion of the lemma, W is elliptically convex, i.e.,

Extr(W ) = BdW.

Then
BdW = Extr(Conv(H · L)) ⊂ H · L ⊂ BdV.

By virtue of (5), we have V = W . Since L is finite and O(n) acts orthogonally on Rn , H · L is
contained in the disjoint union

⊔
ri ·Sn−1 of finitely many concentric spheres. Since BdW ⊂ H ·L

and BdW is connected, BdW ⊂ ri0 ·Sn−1 for some i0 . It follows from (5) that V = W = ri0 ·Bn ,
which contradicts V ∈ LE(n) .

Finally, O(n)W contains H because the action of O(n) on Rn is orthogonal. �
The next step is finding a nonelliptically convex body with additional properties in an arbitrarily

small neighborhood V ∈ LE(n) .

Proposition 3.5. Suppose that V ∈ LE(n) and H = O(n)V is the stabilizer of V . Then, for
any ε > 0 , there exists a finite set L ⊂ BdV such that 0 ∈ Int(ConvL) and

(i) W = Conv(H · L) is not elliptically convex,
(ii) V and W have the same O(n)-stabilizers, and
(iii) ρH(V , W ) < ε .

Proof. Applying Corollary 5.5 [19, Chap. 2] to the O(n)-space C(n) , we conclude that there
exists a θ > 0 such that

(6) if U ∈ C(n) and ρH(V , U) < θ , then the subgroup conjugate to the stabilizer O(n)U
is contained in H , or, equivalently, O(n)U ⊂ H ′ , where H ′ is some subgroup conjugate
to H .

Lemma 3.6. If U ∈ C(n) , ρH(V , U) < θ , and O(n)U ⊇ H , then O(n)U = H .

Proof. Since H ⊂ O(n)W , (6) implies H ⊂ H ′ . The Lie groups H and H ′ are isomorphic;
hence dimH = dimH ′ and C(H) = C(H ′) . Property (β) implies H = H ′ . �

Clearly, there exists a finite set L ⊂ BdV such that 0 ∈ Int(ConvL) and ρH(V , ConvL) < θ .
Let W � Conv(H · L) . Then

V ⊇ Conv(H · L) = W ⊇ ConvL

and, therefore, ρH(V , W ) < θ . Since

O(n)W = O(n)Conv(H·L) ⊃ O(n)H·L ⊇ H ,

Lemma 3.6 implies O(n)W = H . �
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Now, we apply Proposition 3.5 to construct an ample family of equivariant retractions to nonel-
liptically convex orbits.

Lemma 3.7. There exist an open O(n)-cover ω = {Uγ} of the O(n)-space Z � LE(n) × (0, 1]
and a family Ω = {rγ : Uγ → Pγ} of O(n)-maps such that

(e) for any γ , Pγ = (O(n) · Qγ) × {tγ} , where Qγ ∈ C(n) is not elliptically convex and
tγ ∈ (0, 1] ;

(f) the cover {Uγ} is O(n)-adjacent to A � L(n)× [0, 1] \ Z = {Bn} × [0, 1] ∪ L(n)× {0} 2;
(g) for any O(n)-orbit O(a) ⊂ A , where a ∈ A , and any ε > 0 , there exists a δ > 0 such that

dist(rγ , IdUγ ) < ε provided that Uγ is contained in the δ-neighborhood (with respect to the
Hausdorff metric) N(O(a) ; δ) of the orbit O(a) (or, briefly, dist(rγi , Id) → 0 provided
that Uγi → O(a) ⊂ A ).

Proof. Suppose that Q ∈ LE(n) , t ∈ (0, 1] , and R = {g ·Q, t) | g ∈ O(n)} ⊂ Z is the orbit of Q .
By the Palais cut Theorem [20], there exists an O(n)-retraction r′R : VR → R (r′R �R= Id), where
VR ⊂ Z is an invariant neighborhood of R . We can assume that

(7) the cover {VR} is O(n)-adjacent to A and
(8) dist(r′Ri

, Id) → 0 provided that VRi → O(a) ⊂ A .

By Proposition 3.5, for any orbit R = (O(n) ·Q)×{t} , we can find an orbit R′ = (O(n) ·Q′)×{t}
such that

(9) the body Q′ is not elliptically convex and
(10) there exists an O(n)-homeomorphism sR : R → R′ such that dist(sRi , Id) → 0 provided

that VRi → O(a) ⊂ A .

The cover {VR} and the family of compositions rR = sR ◦ r′R : VR → R′ are the required ω
and Ω. �

We proceed to complete the proof of Theorem 3.2. Let {λγ : Z → [0, 1]} be an equivariant
partition of unity subordinate to the cover {Uγ} , and let R be the retraction from Proposition 2.3.
We define the required O(n)-map F as

F (V , t) =
{

R ◦ (∑
γ λγ(V , t) · rγ(V , t)

)
if (V , t) ∈ Z,

F (V , t) = V if (V , t) ∈ A.

By Lemma 3.3, the finite sum
∑

γ λγ(V , t)·rγ(V , t) , where (V , t) ∈ Z , is not an elliptically convex
body. Since R(W ) and W are affinely equivalent (by Proposition 2.3), F (V , t) for (V , t) ∈ Z is
not elliptically convex either. The continuity of F at the points (V , t) ∈ A follows from (8). �
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2We say that a family {Bγ} of G-subsets of X contained in X \ A is G-adjacent to the G-set A if, for any

x ∈ A and any neighborhood O(x) ⊂ X , there exists a neighborhood O1(x) ⊂ X such that Bγ ⊂ G·O(x) provided
that Bγ ∩ G · O1(x) 
= ∅.
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