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Abstract
We present the theory of a new fractional Sobolev space in complete manifolds with
variable exponent. As a result, we investigate some of our new space’s qualitative
properties, such as completeness, reflexivity, separability, and density. We also show
that continuous and compact embedding results are valid. We apply the conclusions
of this study to the variational analysis of a class of fractional p(z, ·)-Laplacian problems
involving potentials with vanishing behavior at infinity as an application.
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1 Introduction
Let (M, g) be a smooth complete compact Riemannian n-manifold. The present paper
is devoted to proving some qualitative properties of a new fractional Sobolev space with
variable exponent in complete manifolds, as well as to studying the existence of weak so-
lutions to the following problem as an application:

(P)

⎧
⎨

⎩

(–�g)s
p(z,·)u(z) + V(z)|u(z)|q(z)–2u = h(z, u(z)) in Q,

u|∂Q = 0,

where Q⊂M is an open bounded set with a smooth boundary ∂Q, s ∈ (0, 1), p ∈ C(M×
M, (1;∞)) with sp(z, y) < n, we assume that p is symmetric and satisfies the following con-
ditions:

1 < p– = min
(z,y)∈M2

p(z, y) ≤ p(z, y) ≤ p+ = max
(z,y)∈M2

p(z, y), (1)

p
(
(z, y) – (x, x)

)
= p(z, y) ∀x, y, z ∈ M3, (2)

and we set

p̂(z) = p(z, z), ∀z ∈ M,
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also q : M → (1,∞) satisfies 1 < q– ≤ q+ < p– ≤ p+ < +∞, where q+ = supz∈M q(z), q– =
infz∈M q(z), and functions h,V satisfy some suitable conditions (see Sect. 4).

This type of operator has a significant role in many fields in mathematics, e.g., calculus of
variations and partial differential equations, and it has also been used in a variety of phys-
ical and engineering contexts, e.g., fluid filtration in porous media, constrained heating,
elastoplasticity, image processing, optimal control, financial mathematics, and elsewhere,
see [8, 18, 37] and the references therein.

In recent years, wide research has been done on fractional partial differential equations
with variable growth. For example, Bahrouni and Rădulescu [7] developed some qualita-
tive properties on the fractional Sobolev space W s,q(z),p(z,y)(Q) for s ∈ (0, 1) and Q being a
bounded domain in R

n with a Lipschitz boundary. Moreover, they studied the existence
of solutions to the following problem:

⎧
⎨

⎩

Lu(z) + |u(z)|q(z)–1u(z) = λ|u(z)|r(z)–1u(z) in Q,

u = 0 in ∂Q,

where

Lu(z) = p.v.
∫

Q

|u(z) – u(y)|p(z,y)–2(u(z) – u(y))
|z – y|n+sp(z,y) dy,

λ > 0, and 1 < r(z) < p– = min(z,y)∈Q×Q p(z, y). Bahrouni [6] continued the study of this class
of fractional Sobolev spaces with variable exponent and the related nonlocal operator.
More precisely, he proved a variant of the comparison principle for (–�p(z))s. He gave a
general principle of sub-supersolution method for the following problem:

(P1)

⎧
⎨

⎩

(–�p(z))su = f (z, u) in Q,

u = 0 in R
n\Q,

where Q is a smooth open bounded domain, n ≥ 3, s ∈ (0, 1), p, f are continuous functions,
and f satisfies the following assumption:

∣
∣f (z, t)

∣
∣ ≤ c1 + c2|t|r(z)–1, ∀z ∈R

n,∀t ∈R,

where r ∈ C(Rn,R) and 1 < r(z) < p∗(z) = np(z,z)
n–sp(z,z) ,∀z ∈R

n.
Kaufmann, Rossi, and Vidal [32] proved a compact embedding theorem for fractional

Sobolev spaces with variable exponents into variable exponent Lebesgue space and, as
an application, they showed the existence and uniqueness of solutions to the following
fractional p(z, y)-Laplacian equation:

⎧
⎨

⎩

Lu(z) + |u(z)|q(z)–2u(z) = f (z) in Q,

u = 0 in ∂Q,

with f ∈ La(z)(Q), a(z) > 1.
In [31] the authors refined the fractional Sobolev spaces with variable exponents given

in [6, 7, 32] and established fundamental embeddings of this space. In addition, they gave
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a sufficient condition for the exponent p(·, ·) on R
n ×R

n for the iteration argument of De
Giorgi type and proved global boundedness of weak solutions to the problem (P1). Read-
ers may refer to [1, 4, 5, 12–14, 19, 21–23, 27, 33, 34, 36, 38, 42] and the references therein
for more ideas and techniques developed to guarantee the existence of weak solutions for a
class of nonlocal fractional problems with variable exponents. When p(·, ·) = p = constant,
we quote, for example, the relevant work of Vázquez [41], see also [2, 9–11, 15, 17, 20, 35]
and the references therein. Various techniques have been proposed in the literature in or-
der to recover the compactness in several circumstances. We refer to Tang and Cheng [40],
who proposed a new approach to restore the compactness of Palais–Smale sequences, and
to Tang and Chen [39], who introduced an original method to recover the compactness of
minimizing sequences. A related approach has been developed by Chen and Tang [16] in
the framework of Cerami sequences.

Before discussing our main results, we give a review of equations involving the fractional
p-Laplace operator on Riemannian manifolds. As far as we know, there is only the work
of Guo, Zhang, and Zhang [29] who proved the existence of solutions to the following
p-Laplacian equations with homogeneous Dirichlet boundary conditions:

⎧
⎨

⎩

(–�g)s
pu(z) = f (z, u(x)) in Q,

u = 0 in M\Q,

where sp < n with s ∈ (0, 1), p ∈ (1;∞), (–�g)s
p is the fractional p-Laplacian on Riemannian

manifolds, (M, g) is a compact Riemannian n-manifold, Q is an open bounded subset of M
with a smooth boundary ∂Q, and f is a Carathéodory function satisfying the Ambrosetti–
Rabinowitz-type condition.

The motivation of this paper was, on the one hand, the work of Fu and Guo [24] who
introduced the variable exponent function spaces on Riemannian manifolds in 2012, fol-
lowed by Gaczkowski and Górka [25] who in 2013 examined the above space in the case of
compact manifolds, and Guo [28] who in 2015 discussed the properties of the Nemytsky
operator and obtained the existence of weak solutions for Dirichlet problems of nonho-
mogeneous p(m)-harmonic equations. Finally, in 2016 Gaczkowski, Górka, and Pons [26]
studied the variable exponent function spaces on complete noncompact Riemannian man-
ifolds. Furthermore, they proved the continuous embeddings results between Sobolev and
Hölder function spaces, using classic assumptions on the geometry. In addition, they es-
tablished the compact embeddings of H-invariant Sobolev spaces, where H is a compact
Lie subgroup of the manifold group of isometries, and, as an application, they showed
the existence of weak solutions to nonhomogeneous q(z)-Laplace equations. For further
background, we recommend that readers consult [1, 12] and the references therein. On
the other hand, we were also motivated by the work of Guo, Zhang, and Zhang [29] who
established the theory of fractional Sobolev spaces on Riemannian manifolds.

The novelty of our work is in extending Sobolev spaces with variable exponents to cover
the fractional case with complete manifolds. We prove some qualitative properties of this
new space. Next, we study the existence of solutions to some nonlocal problems involv-
ing potentials allowed for vanishing behavior at infinity. However, the main difficulty is
presented by the fact that the p(z)-Laplacian operator has a more complicated nonlinear-
ity than the p-Laplacian operator. For example, it is nonhomogeneous. To the best of our
knowledge, there is no known result along this line.
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The outline of the paper is as follows. In Sect. 2, we collect the pertinent properties and
notations of Lebesgue spaces with variable exponents and Sobolev–Orlicz spaces with
variable exponents on a complete manifold. Moreover, we show the relation between the
norm and the modular. In Sect. 3, we study the completeness, reflexivity, separability, and
density of our new space. Furthermore, we prove a continuous and compact embedding
theorem of this space into variable exponent Lebesgue spaces. In Sect. 4, we deal with a
fractional p(z)-Laplacian problem involving potentials allowed for vanishing behavior at
infinity as an application.

2 Preliminaries
In this section, we review some definitions and properties of spaces W 1,q(z)

0 (Q), where Q
is an open subset of Rn, and W 1,q(z)

0 (M), which are known as the Sobolev spaces with vari-
able exponents and the Sobolev spaces with variable exponents on a complete manifold,
respectively. For more background, we refer to [1, 3, 12, 21, 26, 28, 30] and the references
therein.

2.1 Sobolev spaces with variable exponents
Suppose that Q ⊂ R

n is a bounded open domain, with n ≥ 2. Let q(·) : Q → (1,∞) be a
measurable function. We define real numbers q+ and q– as follows:

q+ = ess sup
{

q(z) : z ∈Q
}

and q– = ess inf
{

q(z) : z ∈Q
}

.

Definition 2.1 ([21]) We define the Lebesgue space with variable exponent Lq(·)(Q) as
follows:

Lq(·)(Q) =
{

u : Q→R : �q(·)(u) =
∫

Q

∣
∣u(z)

∣
∣q(z) dz < +∞

}

,

and endow it with the Luxemburg norm

‖u‖Lq(·)(Q) = inf

{

μ > 0 : �q(·)
(

u
μ

)

≤ 1
}

,

if q+ < +∞.

Proposition 2.1 ([21]) (Lq(·)(Q),‖ · ‖Lq(·)(Q)) is a separable Banach space, and uniformly
convex for 1 < q– ≤ q+ < +∞, hence reflexive.

Proposition 2.2 (Hölder inequality, [21])

∣
∣
∣
∣

∫

Q
uv dx

∣
∣
∣
∣ ≤

(
1

q– +
1

(q′)–

)

‖u‖Lq(·)(Q)‖v‖Lq′(·)(Q), ∀u, v ∈ Lq(·)(Q) × Lq′(·)(Q),

with 1
q(z) + 1

q′(z) = 1.

Definition 2.2 ([21]) We define the variable exponent Sobolev space by

W 1,q(z)(Q) =
{

u : u ∈ Lq(z)(Q) and |Du| ∈ Lq(z)(Q)
}

,
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end endow it with the norm

‖u‖W 1,q(z)(Q) = ‖u‖Lq(z)(Q) + ‖Du‖Lq(z)(Q), ∀u ∈ W 1,q(z)(Q)

and set W 1,q(z)
0 (Q) := C∞

0 (Q)
W 1,q(z)(Q)

.

2.2 Sobolev spaces with variable exponents on complete manifolds
Let (M, g) be a smooth complete compact Riemannian n-manifold. We begin by recalling
some background, more can be found in [1, 3, 26, 28, 30]. A chart of manifold M is a
couple (Q,ϕ), where ϕ is a homeomorphism of the open set Q onto some open subset of
R

n. Furthermore, a collection of charts (Qi,ϕi)i∈I such that M =
⋃

i∈I Qi is called an atlas
on M.

Remark 2.1 ([30, page 9]) For any atlas (Qi,ϕi)i∈I on M, there exists a partition of unity
(Qj,ϕj,ηj)j∈J subordinate to the covering (Qi)i∈I .

Now, we define a natural positive Radon measure.

Definition 2.3 ([30, page 9)]) Let u : M → R be continuous with compact support, and
let (Qi,ϕi)i∈I be an atlas on M, and set

∫

M
u(z) dvg(z) =

∑

k∈J

∫

ϕk (Qk )

((
det(gij)

) 1
2 ηku

)
oϕ–1

k (z) dz,

where dvg = (det(gij))
1
2 dz is the Riemannian volume element on (M, g), gij are the com-

ponents of the Riemannian metric g in the chart, and dz is the Lebesgue volume element
of Rn.

Next, we define the Sobolev spaces Lq(·)
k (M) as the completion of Cq(·)

k (M) with respect
to the norm ‖u‖Lq(·)

k
, where

Cq(·)
k (M) =

{
u ∈ C∞(M) such that ∀j, 0 ≤ j ≤ k,

∣
∣Dku

∣
∣ ∈ Lq(·)(M)

}

and

‖u‖Lq(·)
k

=
k∑

j=0

∥
∥Dju

∥
∥

Lq(·) ,

with |Dku| being the norm of the kth covariant derivative of u, defined in local coordinates
by

∣
∣Dku

∣
∣2 = gi1j1 · · ·gik jk

(
Dku

)

i1...ik

(
Dku

)

j1...jk
.

Definition 2.4 ([3]) Let ζ : [α,β] →M be a curve of class C1. The length of ζ is

�(ζ ) =
∫ β

α

√

g
(

dγ

ds
,

dγ

ds

)

ds,
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and, for a pair of points z, y ∈M, we define the distance dg(z, y) between z and y by

dg(z, y) = inf
{
�(ζ ) : ζ [α,β] →M such as ζ (α) = z and ζ (β) = y

}
.

Definition 2.5 ([26]) A function t : M → R is log-Hölder continuous if there exists a
constant C such that, for every pair of points {z, y} in M,

∣
∣t(z) – t(y)

∣
∣ ≤ C

(

log

(

e +
1

dg(z, y)

))–1

.

Let P log(M) be the set of log-Hölder continuous real functions on M, which is linked
to P log(Rn) by the following proposition:

Proposition 2.3 ([3, 26]) Given q ∈P log(M), let (Q,φ) be a chart such that

1
2
δij ≤ gij ≤ 2δij

as bilinear forms, where δij is the Kronecker delta symbol. Then q ◦ φ–1 ∈P log(φ(Q)).

Definition 2.6 ([3]) If the Ricci tensor of g, denoted by Rc(g), satisfies Rc(g) ≥ λ(n – 1)g,
for some λ and for all z ∈ M,∃v > 0 such that |B1(z)|g ≥ v, where B1(z) are balls of radius
1 centered at some point z in terms of the volume of smaller concentric balls, then we say
that the n-manifold (M, g) has property Bvol(λ, v).

Proposition 2.4 ([1, Proposition 2.17]) Let u ∈ Lq(z)(M), {uk}k≥0 ⊂ Lq(z)(M). Then
(i) ‖u‖Lq(z)(M) < 1 �⇒ ‖u‖q+

Lq(z)(M) ≤ �q(z)(u) ≤ ‖u‖q–

Lq(z)(M),

(ii) ‖u‖Lq(z)(M) > 1 �⇒ ‖u‖q–

Lq(z)(M) ≤ �q(z)(u) ≤ ‖u‖q+

Lq(z)(M),
where

�q(z)(u) =
∫

M

∣
∣u(z)

∣
∣q(z) dvg(z).

We now prove the following proposition.

Proposition 2.5 If u, uk ∈ Lq(z)(M) and k ∈ N, then the following assertions are equiva-
lent:

(1) limk→+∞ ‖uk – u‖Lq(z)(M) = 0,
(2) limk→+∞ �q(z)(uk – u) = 0,
(3) uk → u a.e. on M and limk→+∞ �q(·)(uk) = �q(·)(u).

Proof If ‖uk – u‖Lq(z)(M) → 0, then

lim
k→+∞

∫

M
|uk – u|q(z) dvg(z) = 0.

It is now easy to observe that uk → u a.e. on M. Thus |uk|q(z) → |u|q(z) on M and the
integrals of the functions |uk – u|q(z) are absolutely equicontinuous on M, and since

|uk|q(z) ≤ 2q+–1(|uk – u|q(z) + |u|q(z)),
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the integrals of the |uk|q(z) are also absolutely equicontinuous on M, so, by the Vitali con-
vergence theorem, we obtain that

lim
k→+∞

�q(·)(uk) = �q(·)(u).

Conversely, if uk → u on M, we can deduce that |uk – u|q(z) → 0 on M, and using the
same techniques as in the above proof, and due to the fact that

|uk – u|q(z) ≤ 2q+–1(|uk|q(z) + |u|q(z)),

and limk→+∞ �q(·)(uk) = �q(·)(u), we obtain that limk→+∞ �q(·)(uk – u) = 0. �

Remark 2.2 The following relation will be used to compare the functionals ‖ · ‖Lq(·)(M) and
�q(·)(·):

min
{
�q(·)(u)

1
q– ,�q(·)(u)

1
q+ } ≤ ‖u‖Lq(·)(M) ≤ max

{
�q(·)(u)

1
q– ,�q(·)(u)

1
q+ }

.

Definition 2.7 ([28]) The Sobolev space W 1,q(z)(M) consists of all functions u ∈ Lq(z)(M)
for which Dku ∈ Lq(z)(M) k = 1, 2, . . . , n. The norm is defined by

‖u‖W 1,q(z)(M) = ‖u‖Lq(z)(M) +
n∑

k=1

∥
∥Dku

∥
∥

Lq(z)(M).

The space W 1,q(z)
0 (M) is defined as the closure of C∞(M) in W 1,q(z)(M).

Theorem 2.1 ([1]) Let M be a compact Riemannian manifold with a smooth boundary
or without boundary and q(z), p(z) ∈ C(M) ∩ L∞(M). Assume that

q(z) < n, p(z) <
nq(z)

n – q(z)
for z ∈M.

Then

W 1,q(z)(M) ↪→ Lp(z)(M)

is a continuous and compact embedding.

Proposition 2.6 ([3]) If (M, g) is complete, then W 1,q(z)(M) = W 1,q(z)
0 (M).

3 Fractional Sobolev space with variable exponent on a complete manifold
On a complete manifold, we introduce in this section a new fractional Sobolev space with
variable exponent and state our mains results.

Definition 3.1 Let p : M × M → (1;∞) be a continuous variable exponent and let s ∈
(0, 1). We define the modular

�p(·,·)(u) =
∫

M×M

|u(z) – u(y)|p(z,y)

(dg(z, y))n+sp(z,y) dvg(z) dvg(y).
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For s ∈ (0, 1), we introduce the variable exponent Sobolev fractional space on a complete
manifold as follows:

W s,p(z,y)(M) =
{

u : M→R : u ∈ Lp̂(z)(M) such as

∫

M×M

|u(z) – u(y)|p(z,y)

(dg(z, y))n+sp(z,y) dvg(z) dvg(y) < ∞, for some λ > 0
}

.

Consequently,

‖u‖�p(·,·) = inf

{

λ > 0 : �p(·,·)
(

u
λ

)

≤ 1
}

= [u]W s,p(z,y)(M).

The modular �p(·,·) has the following properties.

3.1 Lemmas
In this part, we will go through some of our new fractional space’s qualitative lemmas.

Lemma 3.1 Let p ∈ C(M × M, (1;∞)) be a continuous variable exponent. Then for any
u ∈ W s,p(z,y)(M), we get

(1) [u]W s,p(z,y)(M) ≥ 1 �⇒ [u]p–

W s,p(z,y)(M) ≤ �p(·,·)(u) ≤ [u]p+

W s,p(z,y)(M),

(2) [u]W s,p(z,y)(M) ≤ 1 �⇒ [u]p+

W s,p(z,y)(M) ≤ �p(·,·)(u) ≤ [u]p–

W s,p(z,y)(M).

Proof (1) For all θ ∈ (0, 1), we have

θp+
�p(·,·)(u) ≤ �p(·,·)(θu) ≤ θp–

�p(·,·)(u).

So, if [u]W s,p(z,y)(M) > 1, then 0 < 1
[u]W s,p(z,y)(M)

< 1, thus we have

�p(·,·)(u)
[u]p+

W s,p(z,y)(M)

≤ �p(·,·)
(

u
[u]W s,p(z,y)(M)

)

≤ �p(·,·)(u)
[u]p–

W s,p(z,y)(M)

,

and, since �p(·,·)( u
[u]W s,p(z,y)(M)

) = 1, obtain our result. We proceed in the same way for
(2). �

Remark 3.1 It is important to note that the results of Proposition 2.5 apply to �p(·,·).

Lemma 3.2 If (M, g) be a smooth complete compact Riemannian n-manifold, then
W s,p(z,y)(M) is a Banach space.

Proof Let {un} be a Cauchy sequence in W s,p(z,y)(M). Since

p̂(z) < p̂∗
s (z) =

⎧
⎨

⎩

np̂(z)
n–sp̂(z) if sp̂(z) < n,

+∞ otherwise,

for any z ∈M, it follows that for any η > 0, there exists μη such that, if �, m ≥ μη ,

‖u� – um‖Lp̂(z)(M) ≤ ‖u� – um‖W s,p(z,y)(M) ≤ η. (3)
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Since Lp̂(z)(M) is complete (Lemma 2.5 in [28]), there exists u ∈ Lp̂(z)(M) such that u� → u
strongly in Lp̂(z)(M) as � → +∞. Consequently, we may find a subsequence {u�t } of {u�}
in W s,p(z,y)(M) such that u�t → u a.e. on M.

Then, by the Fatou’s lemma and (3) with η = 1, we obtain

�p(·,·)(u)

=
∫

M×M

|u(z) – u(y)|p(z,y)

(dg(z, y))n+sp(z,y) dvg(z) dvg(y)

≤ lim
t→+∞ inf

∫

M×M

|u�t (z) – u�t (y)|p(z,y)

(dg(z, y))n+sp(z,y) dvg(z) dvg(y)

≤ 2p+–1 lim
t→+∞ inf

[∫

M×M

|(u�t (z) – uμ1 (z)) – (u�t (y) – uμ1 (z))|p(z,y)

(dg(z, y))n+sp(z,y) dvg(z) dvg(y)

+
∫

M×M

|uμ1 (z) – uμ1 (y)|p(z,y)

(dg(z, y))n+sp(z,y) dvg(z) dvg(y)
]

≤ 2p+–1
[

lim
t→+∞ inf�p(·,·)(u�t – uμ1 ) + �p(·,·)(uμ1 )

]

≤ 2p+–1
[

lim
t→+∞ inf

(‖u�t – uμ1‖p+

W s,p(z,y)(M) + ‖u�t – uμ1‖p–

W s,p(z,y)(M)

)

+
(‖uμ1‖p+

W s,p(z,y)(M) + ‖uμ1‖p–

W s,p(z,y)(M)

)]

≤ 2p+–1(2 + ‖uμ1‖p+

W s,p(z,y)(M) + ‖uμ1‖p–

W s,p(z,y)(M)

)
< +∞.

Hence, u ∈ W s,p(z,y)(M). On the other hand, let � ≥ μη . Then, according to (3) and from
Fatou’s lemma, we get

�p(·,·)(u� – u) ≤ lim
t→+∞ inf�p(·,·)(u� – u�t ) ≤ ηp+ + ηp–

2
= η∗.

Thus lim�→+∞ �p(·,·)(u� – u) = 0. Thanks to Remark 3.1, lim�→+∞ ‖u� – u‖W s,p(z,y)(M) = 0.
That is, u� → u strongly on W s,p(z,y)(M) as � → +∞. �

Lemma 3.3 Let (M, g) be a smooth complete compact Riemannian n-manifold, and
p(z, y) ∈ C(M×M, (1,∞)) with sp(z, y) < n, for z, y ∈M. Then W s,p(z,y)(M) is a separable
and reflexive space.

Proof Consider u, v ∈ W s,p(z,y)
0 (M) satisfying ‖u‖W s,p(z,y)

0 (M) = ‖v‖W s,p(z,y)
0 (M) = 1 and ‖u –

v‖W s,p(z,y)
0 (M) ≥ ε, where ε ∈ (0, 2).

Case p(z, y) ≥ 2. By inequality (28) in [2], we have that

∥
∥
∥
∥

u + v
2

∥
∥
∥
∥

p(z,y)

W s,p(z,y)
0 (M)

+
∥
∥
∥
∥

u – v
2

∥
∥
∥
∥

p(z,y)

W s,p(z,y)
0 (M)

≤
(

1
2

) p+
p– ∫

M×M

|u(z) – u(y)|p(z,y)

(dg(z, y))n+sp(z,y) dvg(z) dvg(y)

+
(

1
2

) p+
p– ∫

M×M

|v(z) – v(y)|p(z,y)

(dg(z, y))n+sp(z,y) dvg(z) dvg(y)
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<
1
2

∫

M×M

|u(z) – u(y)|p(z,y)

(dg(z, y))n+sp(z,y) dvg(z) dvg(y)

+
1
2

∫

M×M

|v(z) – v(y)|p(z,y)

(dg(z, y))n+sp(z,y) dvg(z) dvg(y)

=
1
2
‖u‖p(z,y)

W s,p(z,y)
0 (M)

+
1
2
‖v‖p(z,y)

W s,p(z,y)
0 (M)

= 1.

So, ‖ u+v
2 ‖p(z,y)

W s,p(z,y)
0 (M)

≤ 1 – (ε/2)p(z,y). Taking δ = δ(ε) such that 1 – (ε/2)p(z,y) = (1 – δ)p(z,y), we

obtain ‖ u+v
2 ‖W s,p(z,y)

0 (M) ≤ (1 – δ).

Case 1 < p(z, y) < 2. Letting p′(z, y) = p(z,y)
(p(z,y)–1) , we have

‖u‖p′(z,y)

W s,p(z,y)
0 (M)

=
[∫

M×M

(( |u(z) – u(y)|
(dg(z, y))

n
p(z,y) +s

)p′(z,y))p(z,y)–1

dvg(z) dvg(y)
] 1

p(z,y)–1
.

As a result of the Minkowski inequality (see Theorem 2.13 in [15]) and inequality (27) in
[2], we obtain that

∥
∥
∥
∥

u + v
2

∥
∥
∥
∥

p′(z,y)

W s,p(z,y)
0 (M)

+
∥
∥
∥
∥

u – v
2

∥
∥
∥
∥

p′(z,y)

W s,p(z,y)
0 (M)

≤
{∫

M×M

[(∣
∣
∣
∣
(u(z) – u(y)) + (v(z) – v(y))

2(dg(z, y))
n

p(z,y) +s

∣
∣
∣
∣

)p′(z,y)

+
(∣

∣
∣
∣
(u(z) – u(y)) – (v(z) – v(y))

2(dg(z, y))
n

p(z,y) +s

∣
∣
∣
∣

)p′(z,y)]p(z,y)–1

dvg(z) dvg(y)
} 1

p(z,y)–1

≤
(

1
2
‖u‖p(z,y)

W s,p(z,y)
0 (M)

+
1
2
‖v‖p(z,y)

W s,p(z,y)
0 (M))

)p′(z,y)–1

= 1.

Hence,

∥
∥
∥
∥

u + v
2

∥
∥
∥
∥

p′(z,y)

W s,p(z,y)
0 (M)

≤ 1 –
εp′(z,y)

2p′(z,y) .

Taking δ = δ(ε) such that 1 – (ε/2)p′(z,y) = (1 – δ)p′(z,y), from the Milman–Pettis theorem we
obtain that W s,p(z,y)

0 (M) is reflexive.
Now, we show that W s,p(z,y)

0 (M) is a separable space. Define the operator

T : W s,p(z,y)(M) → Lp̂(z)(M) × Lp(z,y)(M×M),

u �→ T(u) =
(

u(z),
u(z) – u(y)

dg(z, y)
n

p(z,y) +s

)

.

Then
• T is well defined.
• T is an isometry.
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Indeed, for u ∈ W s,p(z,y)
0 (M), we obtain

∥
∥T(u)

∥
∥

Lp̂(z)(M)×Lp(z,y)(M×M) = ‖u‖Lp̂(z)(M) +
∥
∥
∥
∥

u(z) – u(y)

dg(z, y)
n

p(z,y) +s

∥
∥
∥
∥

Lp(z,y)(M×M)

= ‖u‖W s,p(z,y)
0 (M).

So, T(W s,p(z,y)
0 (M)) is a closed subspace of Lp̂(z)(M) × Lp(z,y)(M×M). Thanks to Propo-

sition 3.17 in [15], we get that T(W s,p(z,y)
0 (M)) is separable, therefore W s,p(z,y)

0 (M) is also
separable. �

Lemma 3.4 Suppose that (M, g) satisfies property Bvol(λ, v) with finite volume, and (2)
holds. Then C∞

0 (M) is dense in W s,p(z,y)(M).

Proof Consider the following real-valued function:

f (t) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if t ≤ 0,

1 – t if 0 ≤ t ≤ 1,

0 if t ≥ 1.

Let ϕ ∈ C∞(M) ∩ W s,p(z,y)(M), and let y be a fixed point of M such that ϕν(α) =
ϕ(α)f (dg(y,α))), where dg is the Riemannian distance associated to g and ν ∈ N. We can
easily see that ϕν(α) ∈ W s,p(z,y)(M) for ν ∈ N. Then, since M is a compact Riemannian
n-manifolds, it can be covered by a finite number of charts (Qk ,φk)k=1,...,m. Let ηk be a
smooth partition of unity subordinate to the covering Qk . We can see that h = ηkϕν ◦φ–1

k ∈
W s,p(z,y)(φk(Qk)).

So, by Lemma 3.2 in [7], we can extract a subsequence ht ∈ C∞(R�) such that ht →
h strongly in W s,p(z,y)(φk(Qk)) as t → ∞. Thus, ht ◦ φk ∈ C∞(M) and ht ◦ φk converge
strongly to ηkϕν in W s,p(z,y)(M) as t → ∞. �

Remark 3.2 We can also prove the previous lemma, without assuming condition (2), by
using the following method:

For u ∈ C∞
0 (M), we need to prove that

∫

M×M

|u(z) – u(y)|p(z,y)

(dg(z, y))n+sp(z,y) dvg(z) dvg(y) < ∞.

Notice that ∀(z, y) ∈M×M, we have

∣
∣u(z) – u(y)

∣
∣ ≤ ‖Du‖L∞(M) dg(z, y),

∣
∣u(z) – u(y)

∣
∣ ≤ 2‖u‖L∞(M).

Thus,

∣
∣u(z) – u(y)

∣
∣p(z,y) ≤ ‖Du‖p(z,y)

L∞(M)
(
dg(z, y)

)p(z,y), for all (z, y) ∈M×M,

and

∣
∣u(z) – u(y)

∣
∣p(z,y) ≤ 2p(z,y)‖u‖p(z,y)

L∞(M), for all (z, y) ∈M×M.
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Hence,

∣
∣u(z) – u(y)

∣
∣p(z,y) ≤ (‖Du‖p+

L∞(M) + ‖Du‖p–

L∞(M)
)(

dg(z, y)
)p(z,y),

for all (z, y) ∈M×M,

and

∣
∣u(z) – u(y)

∣
∣p(z,y) ≤ 2p+(‖u‖p+

L∞(M) + ‖u‖p–

L∞(M)
)
, for all (z, y) ∈M×M.

Hence

∣
∣u(z) – u(y)

∣
∣p(z,y) ≤ 2p+–1(‖u‖p+

C1(M) + ‖u‖p–

C1(M)

)
min

{
1,

(
dg(z, y)

)p(z,y)}.

Therefore, according to [30], we obtain

∫

M×M

|(ηsu)(z) – (ηsu)(y)|p(z,y)

(dg(z, y))n+sp(z,y) dvg(z) dvg(y)

≤ vol(M)2p+–1(‖u‖p+

C1(M) + ‖u‖p–

C1(M)

)

×
∫

M×M

min{1, (dg(z, y))p(z,y)}
(dg(z, y))n+sp(z,y) dvg(z) dvg(y) < ∞,

where (ηs) is a smooth partition of unity subordinate of the covering Bzk (r) for any k, and
Bzk (r) denotes the Euclidean ball of Rn with center zk and radius r. Then we deduce that,
for u ∈ C∞

0 (M),

∫

M×M

|u(z) – u(y)|p(z,y)

(dg(z, y))n+sp(z,y) dvg(z) dvg(y) < ∞.

Thus u ∈ W s,p(z,y)(M).

Now, we will extend an embedding result between W 1,p(z,y)(M) and W s,p(z,y)(M) to man-
ifolds.

Lemma 3.5 Suppose that the smooth complete compact Riemannian n-manifold (M, g)
has property Bvol(λ, v) for some (λ, v), p ∈ C(M × M, (1, +∞)), and s ∈ (0, 1). Then
‖u‖W s,p(z,y)(M) ≤ C‖u‖W 1,p(z,y)(M), where C = C(n, s,λ, v, p+, p–). In particular, W 1,p(z,y)(M) �
W s,p(z,y)(M).

Proof For the sake of convenience, let [u]W 1,p(z,y)(M) = 1 and set

C = sup
(z,y)∈M×M

(
dg(z, y)

)(1–s)p(z,y).

Then

∫

M×M

|u(z) – u(y)|p(z,y)

C(dg(z, y))n+sp(z,y) dvg(z) dvg(y)
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=
∫

M×M

|u(z) – u(y)|p(z,y)

(dg(z, y))n+p(z,y)
(dg(z, y))(1–s)p(z,y)

C
dvg(z) dvg(y)

≤
∫

M×M

|u(z) – u(y)|p(z,y)

(dg(z, y))n+p(z,y) dvg(z) dvg(y)

≤ 1.

Thus, [u]W s,p(z,y)(M) ≤ C[u]W 1,p(z,y)(M).
Hence,

‖u‖W s,p(z,y)(M) ≤ C‖u‖W 1,p(z,y)(M). �

Remark 3.3 We can also prove the previous lemma using the same technique as that of
[29, Lemma 2.6].

Theorem 3.1 LetM be a compact Riemannian manifold, p ∈ C(M×M, (1;∞)), s ∈ (0, 1)
with sp(z, y) < n and q ∈ C(M, (1;∞)). Assume that

1 < q– = min
z∈M

q(z) ≤ q(z) <
np̂(z)

n – sp̂(z)
for all z ∈M,

then W s,p(z,y)(M) ↪→ Lq(z)(M) is a continuous and compact embedding.

Proof The demonstration of this theorem is based on an idea introduced in [1, 21, 28, 29].
Let ϕ : V ⊂ M → R

n be an arbitrary local chart on M, and G ⊂ M an open set with
compact closure and contained in V . Take {Gl}l=1,...,k to be a finite subcovering of M such
that Gl is homeomorphic to the open unit ball B0(1) of Rn and, for any l, the components
gl

ij of g in (gl, Vl) satisfy

1
αδij

< gl
ij < αδij

as bilinear forms, for some constant α > 1. Let {πl}l=1,...,k be a smooth partition of unity
subordinate to the finite covering {Gl}l=1,...,k . It is clear that if u ∈ W s,p(z,y)(M), then
πlu ∈ W s,p(z,y)(Gl) and (ϕ–1

l ) ∗ (πlu) ∈ W s,p(ϕ–1
l (z,y))(B0(1)) with u =

∑k
l=1 πlu. According to

Lemma 3.5, the Sobolev embedding theorem [1, 21, 29], we get the continuous and com-
pact embedding

W s,p(z,z)(Gl) ↪→ Lq(z)(Gl) for any l = 1, . . . , k.

Thus, we can conclude that W s,p(z,y)(M) ⊂ Lq(z)(M), and the embedding is continuous and
compact. �

4 Application
In this part, as an application, we give an existence result to the following problem:

(P)

⎧
⎨

⎩

(–�g)s
p(z,·)u(z) + V(z)|u(z)|q(z)–2u = h(z, u(z)) in Q,

u|∂Q = 0,
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where s ∈ (0, 1), p ∈ C(M×M, (1;∞)) with sp(z, y) < n, q : Q → (1,∞) satisfy the follow-
ing condition:

1 < q– ≤ q+ < p– ≤ p+ <
np̂(z)

n – sp̂(z)
, (4)

(M, g) is a smooth complete compact Riemannian n-manifold, Q ⊂ M is an open
bounded set with smooth boundary ∂Q, h : Q×R →R is a Carathéodory function satis-
fying the following assumptions:

(h1) (AR-condition) There exist β > p+ and some I > 0 such that, for each |α| > I , we have

0 <
∫

M
H(z,α) dvg(z) ≤

∫

M
h(z,α)

α

β
dvg(z) a.e. z ∈M,

where H(z,α) =
∫ α

0 h(z,υ) dυ is the primitive of h(z,α),
(h2) h(z, 0) = 0,
(h3) lim|α|→0

h(z,α)
|α|q(z)–1 = 0 uniformly a.e. z ∈M,

and (–�g)s
p(z,·)u(z) is the fractional p(z, ·)-Laplace operator which (up to normalization fac-

tors) may be defined as

(–�g)s
p(z,·)u(z) = 2 lim

ε→o+

∫

M\Bε (z)

|u(z) – u(y)|p(z,y)–2(u(z) – u(y))
(dg(z, y))n+sp(z,y) dvg(y),

for z ∈ M, where Bε(z) denotes the geodesic ball of M with center z and radius ε and
dg(z, y) defines a distance on M whose topology coincides with the original one. The van-
ishing potential satisfies the following assumptions:

(i) V : M→ R is a continuous function, and there exist θ > 0,γ > 0 such that
V(z) > θ > 0 for all z ∈M, and

∫

M
V(z)

∣
∣u(z)

∣
∣q(z) dvg(z) ≤ γ ‖u‖q(z)

W s,p(z,y)(M),

for all u ∈ W s,p(z,y)
0 (M).

(ii) V(z) → +∞ as |z| → +∞.

Definition 4.1 A measurable function u ∈ W s,p(z,y)
0 (M) is said to be a weak solution of

(P) if

∫

M×M

|u(z) – u(y)|p(z,y)–2(u(z) – u(y))(ϕ(z) – ϕ(y))
(dg(z, y))n+sp(z) dvg(z) dvg(y)

+
∫

M
V(z)

∣
∣u(z)

∣
∣q(z)–2u(x)ϕ(z) dvg(z)

=
∫

M
h
(
z, u(z)

)
ϕ(z) dvg(z), for all ϕ ∈ W s,p(z,y)

0 (M).

Theorem 4.1 Under assumptions (h1)–(h3), (4) and (i)–(ii), if (M, g) satisfies the property
Bvol(λ, v), then problem (P) possesses at least one weak solution.
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Proof Consider the functional E : W s,p(z,y)
0 (M) →R defined by

E(u) = A(u) – B(u),

where

A(u) =
∫

M×M

1
p(z, y)

|u(z) – u(y)|p(z,y)

(dg(z, y))n+sp(z,y) dvg(z) dvg(y) +
∫

M

V(z)
q(z)

∣
∣u(z)

∣
∣q(z) dvg(z)

and

B(u) =
∫

M
H

(
z, u(z)

)
dvg(z).

�

Lemma 4.1 Assume that the assumptions (i)–(iii) hold. Then A ∈ C1(W s,p(z,y)
0 (M)) and

〈
A′(u),ϕ

〉
=

∫

M×M

|u(z) – u(y)|p(z,y)–2(u(z) – u(y))(ϕ(z) – ϕ(y))
(dg(z, y))n+sp(z,y) dvg(z) dvg(y)

+
∫

M
V(z)

∣
∣u(z)

∣
∣q(z)–2u(z)ϕ(z) dvg(z), (5)

for all u,ϕ ∈ W s,p(z,y)
0 (M).

Proof For u ∈ W s,p(z,y)
0 (M), we have

A(u) =
∫

M×M

1
p(z, y)

.
|u(z) – u(y)|p(z,y)

(dg(z, y))n+sp(z,y) dvg(z) dvg(y) +
∫

M

V(z)
q(z)

∣
∣u(z)

∣
∣q(z) dvg(z)

≤ 1
p–

∫

M×M

|u(z) – u(y)|p(z,y)

(dg(z, y))n+sp(z,y) dvg(z) dvg(y) +
1

q–

∫

M
V(z)

∣
∣u(z)

∣
∣q(z) dvg(z)

≤ 1
p–

(‖u‖p+

W s,p(z,y)
0 (M)

+ ‖u‖p–

W s,p(z,y)
0 (M)

)
+

γ

q+

(‖u‖q+

W s,p(z,y)
0 (M)

+ ‖u‖q–

W s,p(z,y)
0 (M)

)

(
using Lemma 3.1 and (i)

)

< + ∞.

Hence, A is well defined.
To prove that A ∈ C1(W s,p(z,y)

0 (M)), we consider {ut} ⊂ W s,p(z,y)
0 (M) such that ut → u

strongly in W s,p(z,y)
0 (M) as t → +∞. Then, we have

lim
t→+∞

∫

M×M

[ |ut(z) – ut(y)|p(z,y)

(dg(z, y)n+sp(z,y) –
|u(z) – u(y)|p(z,y)

(dg(z, y)n+sp(z,y)

]

dvg(z) dvg(y) = 0. (6)

Without losing generality, we further assume that ut −→ u a.e. in M as t → +∞. Using
(6), we get that

{ |ut(z) – ut(y)|p(z,y)(ut(z) – ut(y))
(dg(z, y))n+sp(z,y)

}

t
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is bounded in Lp(z,y)(M×M) and, according to Brezis–Lieb lemma in [23], we obtain

lim
t→+∞

∫

M×M

( |ut(z) – ut(y)|p(z,y)

(dg(z, y))n+sp(z,y) –
|u(z) – u(y)|p(z,y)

(dg(z, y))n+sp(z,y)

)

dvg(z) dvg(y) = 0.

Similarly,

lim
t→+∞

∫

M
V(z)

∣
∣
∣
∣ut(z)

∣
∣q(z)–2ut(z) –

∣
∣u(z)

∣
∣q(z)–2u(z)

∣
∣q(z) dvg(z) = 0.

Hölder’s inequality now gives

∥
∥A′(ut) – A′(u)

∥
∥

(W s,p(z,y)
0 (M))′

= sup
ϕ∈W s,p(z,y)

0 (M);‖ϕ‖
W s,p(z,y)

0 (M)
=1

∣
∣
〈
A′(ut) – A′(u),ϕ

〉∣
∣ → 0 as t → +∞.

Hence, A ∈ C1(W s,p(z,y)
0 (M)). Finally, we can easily verify that the functional A is Gâteaux

differentiable on W s,p(z,y)
0 (M) and (5) holds for all u,ϕ ∈ W s,p(z,y)

0 (M). �

Lemma 4.2 The functional E satisfies the mountain pass geometry in the sense that
(i) E(0) = 0.

(ii) There exist ζ ,μ > 0 such that E(u) ≥ μ if ‖u‖W s,p(z,y)
0 (M) > ζ .

(iii) There exists u, with ‖u‖W s,p(z,y)
0 (M) > ζ , such that E(u) ≤ 0.

Proof
(i) E(0) = 0 is obvious.

(ii) According to (h1), (i), Proposition 2.4, Lemma 3.1, and Theorem 3.1, we have

E(u) =
∫

M×M

1
p(z, y)

|u(z) – u(y)|p(z,y)

(dg(z, y))n+sp(z,y) dvg(z) dvg(y)

+
∫

M

V(z)
q(z)

∣
∣u(z)

∣
∣q(z) dvg(z) –

∫

M
H

(
z, u(z)

)
dvg(z)

≥ 1
p+ �p(·,·)(u) +

θ

q+ ‖u‖q+

Lq(z)(M) –
1
β

‖u‖q–

W s,p(z,y)
0 (M)

≥ 1
p+ ‖u‖p+

W s,p(z,y)
0 (M)

+
θCq+

q+ ‖u‖q+

W s,p(z,y)
0 (M)

–
1

p+ ‖u‖q–

W s,p(z,y)
0 (M)

.

Since p+ > q+ ≥ q–, we deduce that E(u) > 0.
(iii) According to Lemma 3.1, (h1), (h3), and (i), we have for t > 0 and u �= 0,

E(tu) =
∫

M×M

tp(z,y)

p(z, y)
|u(z) – u(y)|p(z,y)

(dg(z, y))n+sp(z,y) dvg(z) dvg(y)

+
∫

M

V(z)
q(z)

tq(z)∣∣u(z)
∣
∣q(z) dvg(z) –

∫

M
H

(
z, tu(z)

)
dvg(z)

≤ tp+

p– �p(·,·)(u) +
γ tq–

q– ‖u‖q–

W s,p(z,y)
0 (M)
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≤ tp+

p– ‖u‖p–

W s,p(z,y)
0 (M)

+
γ tq–

q– ‖u‖q–

W s,p(z,y)
0 (M)

.

Since q– < p–, for t small enough, we infer that E(tu) < 0.
This completes the demonstration of the lemma. �

Lemma 4.3 Let (M, g) be a smooth complete compact Riemannian n-manifold and p(·) ∈
C+(M×M). Assume that assumptions (h1)–(h3) and (i)–(ii) hold. Then the functional E
satisfies the Palais–Smale condition.

Proof Let (um)m∈N ⊂ W s,p(z,y)
0 (M) be such that J(um) is bounded and J ′(um) → 0 as m →

∞. Then there exists C > 0 such that dJ(um, um) ≤ C‖um‖W s,p(z,y)
0

and |J(um)| < C. We prove

that (um)m∈N is bounded in W s,p(z,y)
0 (M).

We prove the statement by the method of contradiction. Indeed, if the assertion were
not true, up to a subsequence, ‖um‖W s,p(z,y)

0 (M) → ∞ as m → ∞. From (h1), we have

C + C‖um‖W s,p(z,y)
0 (M) ≥ E(um) –

1
β

〈
E′(um), um

〉 ≥
(

1
p+ –

1
β

)

‖um‖p+

W s,p(z,y)
0 (M)

.

This is a contradiction as ‖um‖W s,p(z,y)
0 (M) → ∞. Since W s,p(z,y)

0 (M) is a reflexive Banach

space, there exists u ∈ W s,p(z,y)
0 (M) such that, up to a subsequence,

um ⇀ u weakly in W s,p(z,y)
0 (M),

um −→ u a.e. in M,

um → u strongly in Lγ (z)(M) for 1 ≤ γ (z) < p∗
s (z).

Since um −→ u a.e. in M, we have that

|um(z) – um(y)|p(z,y)–2(um(z) – um(y))

(dg(z, y))( n
p(z,y) +s)(p(z,y)–1)

→ |u(z) – u(y)|p(z,y)–2(u(z) – u(y))

(dg(z, y))( n
p(z,y) +s)(p(z,y)–1)

a.e. (z, y) ∈ M × M. On the other hand, ‖um‖W s,p(z,y)
0 (M) is uniformly bounded and this

implies that there exists a constant C > 0 such that

∫

M×M

( |um(z) – um(y)|
dg(z, y)

n
p(z,y) +s

)p(z,y)

dvg(z) dvg(y) ≤ C for all m ≥ 1,

that is,

∫

M×M

∣
∣
∣
∣
|um(z) – um(y)|p(z,y)–2(um(z) – um(y))

dg(z, y)( n
p(z,y) +s)(p(z,y)–1)

∣
∣
∣
∣

p(z,y)
p(z,y)–1

dvg(z) dvg(y) ≤ C.

Therefore,

|um(z) – um(y)|p(z,y)–2(um(z) – um(y))

dg(z, y)( n
p(z,y) +s)(p(z,y)–1)

⇀
|u(z) – u(y)|p(z,y)–2(u(z) – u(y))

dg(z, y)( n
p(z,y) +s)(p(z,y)–1)
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weakly in Lp′(z,y)(M × M) with p′(z, y) = p(z,y)
p(z,y)–1 . If v ∈ W s,p(z,y)

0 (M), it follows that
v(z)–v(y)

dg(z,y)
n

p(z,y) +s ∈ Lp(z,y)(M×M). As a result,

∫

M×M

|um(z) – um(y)|p(z,y)–2(um(z) – um(y))(v(z) – v(y))

dg(z, y)( n
p(z,y) +s)(p(z,y)–1) dg(z, y)

n
p(z,y) +s

dvg(z) dvg(y)

→
∫

M×M

|u(z) – u(y)|p(z,y)–2(u(z) – u(y))(v(z) – v(y))
dg(z, y)n+sp(z,y) dvg(z) dvg(y).

By Vitali’s theorem, we have E′(u) = 0. We define the sequence wn = um –u. Since (um)m∈N
is uniformly bounded and um → u a.e. in M, thanks to Brezis–Lieb lemma in [23], we
obtain that

∫

M×M

|um(z) – um(y)|p(z,y)

dg(z, y)n+sp(z,y) dvg(z) dvg(y)

=
∫

M×M

|wm(z) – wm(y)|p(z,y)

dg(z, y)n+sp(z,y) dvg(z) dvg(y)

+
∫

M×M

|u(z) – u(y)|p(z,y)

dg(z, y)n+sp(z,y) dvg(z) dvg(y) + o(1).

Therefore, a straightforward computation yields

lim
m→∞ E(um) = lim

m→∞

∫

M×M

|wm(z) – wm(y)|p(z,y)

dg(z, y)n+sp(z,y) dvg(z) dvg(y)

–
∫

M
H

(
z, u(z)

)
dvg(z) +

∫

M

V(z)
q(z)

∣
∣u(z)

∣
∣q(z) dvg(z)

+
∫

M×M

1
p(z, y)

∣
∣u(z) – u(y)

∣
∣p(z,y)dg(z, y)n+sp(z,y) dvg(z) dvg(y).

Using E′(um) → 0 as m → ∞, we have

∫

M×M

1
p(z, y)

|wm(z) – wm(y)|p(z,y)

dg(z, y)n+sp(z,y) dvg(z) dvg(y)

→
∫

M
V(z)

∣
∣u(z)

∣
∣q(z) dvg(z) –

∫

M
h
(
z, u(z)

)
u(z) dvg(z)

+
∫

M×M

1
p(z, y)

|um(z) – um(y)|p(z,y)

dg(z, y)n+sp(z,y) dvg(z) dvg(y).

As E′(u) = 0, we have

lim
m−→∞

∫

M×M

1
p(z, y)

|wm(z) – wm(y)|p(z,y)

dg(z, y)n+sp(z,y) dvg(z) dvg(y) = 0. �

So, finally, from Lemmas 4.2 and 4.3, we conclude that our problem (P) possesses a weak
solution.
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4. Ayazoglu, R., Saraç, Y., Şener, S., Alisoy, G.: Existence and multiplicity of solutions for a Schrödinger–Kirchhoff type

equation involving the fractional p(·, ·)-Laplacian operator in R
N . Collect. Math. 72, 129–156 (2021)

5. Azroul, E., Benkirane, A., Shimi, M., Srati, M.: On a class of fractional p(x)-Kirchhoff type problems. Appl. Anal. 100,
383–402 (2021)

6. Bahrouni, A.: Comparison and sub-supersolution principles for the fractional p(x)-Laplacian. J. Math. Anal. Appl. 458,
1363–1372 (2018)

7. Bahrouni, A., Radulescu, V.D.: On a new fractional Sobolev space and applications to nonlocal variational problems
with variable exponent. Discrete Contin. Dyn. Syst., Ser. S 11(3), 379–389 (2018)

8. Benkhira, E.-H., Essoufi, E.-H., Fakhar, R.: On convergence of the penalty method for a static unilateral contact problem
with nonlocal friction in electro-elasticity. Eur. J. Appl. Math. 27, 1–22 (2016)

9. Benslimane, O., Aberqi, A., Bennouna, J.: The existence and uniqueness of an entropy solution to unilateral Orlicz
anisotropic equations in an unbounded domain. Axioms 9, 109 (2020)

10. Benslimane, O., Aberqi, A., Bennouna, J.: On some nonlinear anisotropic elliptic equations in anisotropic Orlicz space.
Arab J. Math. Sci. (2020). https://doi.org/10.1108/AJMS-12-2020-0133

11. Benslimane, O., Aberqi, A., Bennouna, J.: Existence and uniqueness of entropy solution of a nonlinear elliptic equation
in anisotropic Sobolev–Orlicz space. Rend. Circ. Mat. Palermo, II. Ser. 70, 1579–1608 (2021).
https://doi.org/10.1007/s12215-020-00577-4

12. Benslimane, O., Aberqi, A., Bennouna, J.: Existence and uniqueness of weak solution of p(x)-Laplacian in Sobolev
spaces with variable exponents in complete manifolds. Filomat 35, 1453–1463 (2021).
https://doi.org/10.2298/FIL2105453B

13. Benslimane, O., Aberqi, A., Bennouna, J.: Existence results for double phase obstacle problems with variable
exponents. J. Elliptic Parabolic Equ. 7, 875–890 (2021). https://doi.org/10.1007/s41808-021-00122-z

14. Biswas, R., Tiwari, S.: Variable order nonlocal Choquard problem with variable exponents. Complex Var. Elliptic Equ. 66,
853–875 (2021)

15. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext. Springer, New York
(2011)

16. Chen, S.T., Tang, X.H.: On the planar Schrödinger–Poisson system with the axially symmetric potential. J. Differ. Equ.
268, 945–976 (2020)
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