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TOPOLOGY OF 2-DIMENSIONAL COMPLEXES

DENNIS J. GARITY, FRANCISCO F. LASHERAS, AND DUŠAN REPOVŠ

Abstract. We present results concerning geometric topol-
ogy of 2-dimensional polyhedra, with emphasis on those re-
lated to the problem of embeddability into 3-manifolds (and
thickenings), the problem of resolving arbitrary 2-polyhedra
by fake surfaces (including an application to reduce the clas-
sical Whitehead asphericity conjecture to special polyhedra)
and existence of nonhomeomorphic 3-manifolds with equiva-
lent spines. A special section is devoted to algebraic topology
of 2-polyhedra, cohomology of groups and universal covers.

1. On Embeddability of 2-Polyhedra into 3-Manifolds

In this section, we present the basic results on embeddability
of 2-polyhedra into 3-manifolds. We omit Z2-coefficients from the
notation of (co)homology groups. In our notation and terminology,
we follow [45]. Throughout this paper we shall work in the PL
category. By [4] the same results hold in the topological category.
A vertex of a graph is hanging if its degree is one. An edge of a
graph is hanging if one of its endpoints is hanging. A link of a point
of X is its link in some sufficiently small triangulation of X .
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1.1. Fake surfaces and special 2-polyhedra.

A finite 2-polyhedron Q is called a fake surface if each of its points
has a neighborhood homeomorphic to one of the following: the disk
(D2), the book with three pages (a triod cross interval = T × I),
or the cone over the complete graph with four vertices (or over the
1-skeleton of the 3-simplex). See Figure 1.1 for an illustration of
these three types of neighborhoods.

We will refer to points in fake surfaces as points of type 1, 2 and
3, respectively depending on which of the above three neighbor-
hoods they have. Soap films in R

3 exhibit singularities precisely of
types 2 and 3. The notion of soap films from differential geometry
has proved to be an important tool and object of investigation in
algebraic and geometric topology. For a description and discussion
of soap films, see Section 1.1.1, pages 1-3 in [16].

Figure 1.1

By Q′ we shall denote the intrinsic 1-skeleton of a fake surface
Q, i.e. the set of points of type 2 or 3. Obviously, Q′ is a graph
whose vertices have degrees 2 or 4. By Q′′ we denote the finite
set of points of Q which have type 3. A fake surface Q is called a
special 2-polyhedron, if both Q−Q′ and Q′−Q′′ are disjoint unions
of open 2- and 1- disks, respectively (see [8]).
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The following relationship exists among the classes of 2-polyhedra
we shall consider:

Figure 1.2

Examples of fake surfaces are the union of a torus with two disks,
attached to the longitude and the meridian of the torus, and the
Bing house with two rooms shown in Figure 1.3. For a detailed
description of the Bing house with two rooms, see Example 1.6.2
on page 17 of [46].

Figure 1.3
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Note that the Dunce Hat (see [52, Fig. 1.3]) is not a fake surface.
A detailed description of the Dunce Hat is provided in Section 2.5,
pages 20-22 of [17]. Fake surfaces were introduced by Ikeda [22].

1.2. Thickenability of fake surfaces.

A polyhedron P is said to be (orientably) n-thickenable if it embeds
into some (orientable) n-manifold, which is not fixed in advance. An
example is an embedding of the Klein bottle into some orientable 3-
manifold. Indeed, let S1 = {z ∈ C | |z| = 1}. Then the 3-manifold

S1 × [−1, 1]× [0, 1]/(z, t, 0)∼ (z̄,−t, 1)

is orientable and contains the Klein bottle

S1 × 0 × [0, 1]/(z, 0, 0)∼ (z̄, 0, 1).

Another example of an orientable 3-thickening of a non-orientable
2-manifold is the regular neighborhood of RP 2, standardly embed-
ded into RP 3. Note that any compact 2-manifold N is orientably
3-thickenable. Recall that a 2-thickening µ of (or an I-bundle µ
over) ∂N extends to a 3-thickening of (or extends over) N if and
only if δw1(µ) = 0 ∈ H2(N, ∂N). (N is a compact 2-manifold and
w1 is the Stiefel-Whitney class.)

The Matveev obstruction m(Q), needed in the next theorem, is
defined as follows. For every 3-thickening M of a fake surface Q,
m(Q) = w1(M)|Q′. In order to prove that m(Q) does not depend
on M , observe that for a simple closed curve J ⊂ Q′ whether or not
going around the curve J reverses orientation on M does not depend
on M (*). Let γ ∈ Z1(Q′) be a cocycle carried by J . Then the in-
dependence follows because (*) is equivalent to m(Q) ·γ = 1 mod 2
and to w1(M) · γ = 1.

Theorem 1.1. Let Q be a fake surface. Then

(a′) Q is orientably 3-thickenable if and only if it does not contain
a union N of the Möbius band with an annulus where one of the
boundary circles of the annulus attached to the middle circle of the
Möbius band with a map of degree 1 (see [2, 41]).

(a) Q is orientably 3-thickenable if and only if the Matveev obstruc-
tion m(Q) ∈ H1(Q′) is zero (see [24, 41]).

(b) Q is 3-thickenable if and only if the Matveev obstruction δm(Q) ∈
H2(Q, Q′) is zero (see [28, 41]).
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For a proof of this result, see the details in [2, 41, 24].
Note that the following plausible conjectures are false (see [41]).

(i) A fake surface is 3-thickenable if and only if it does not
contain the union of the Möbius band and a 2-surface with
one boundary circle (the boundary circle is attached to the
middle circle of the Möbius band with a map of degree 1).

(ii) A special 2-polyhedron is 3-thickenable if and only if it does
not contain the union of the Möbius band with a disk (the
boundary circle of the disk attached to the middle circle of
the Möbius band with a map of degree 1).

1.3. Arbitrary polyhedra.

Theorem 1.2. For any 2-polyhedron there exists an algorithm of
checking its (orientable) thickenability.

This theorem is folklore – see the proof in [49], and also in [35].
�

Let us give the necessary definitions for the following theorem.
By P ′ we denote the intrinsic 1-skeleton of a polyhedron P , i.e.
the subpolyhedron of P formed by points having no neighborhood
homeomorphic to the closed 2-disk. By P ′′ we denote the intrinsic
0-skeleton of P (or of P ′), i.e. the finite subset of P ′ consisting of all
points having no neighborhood in P ′ homeomorphic to a closed 1-
disk. (or, equivalently, having no neighborhood in P homeomorphic
to a book with n sheets for some n ≥ 1). For any component of
P ′ containing no points of P ′′, take a point in it. Denote by F the
union of P ′′ and these points. Then P ′ is a graph whose vertices
are either hanging or points of F .

Suppose that ∪A∈F lkA embeds into S2 and take a collection of
embeddings {gA : lkA → S2}A∈F . Take a non-hanging edge d ⊂ P ′

and denote its vertices by A and B (possibly, A = B). The edge d
meets lkA∪ lkB at two points (distinct, even when A = B). Then,
regular neighborhoods U and V of these points in lkA and in lkB
are n-ods, which could be identified with the cone over lkd. If for
each such d the maps gA and gB give the same or opposite orders
of rotation of the pages of the book at d then the collection {gA} is
called faithful. This definition differs from the standard one - what
is called faithful we call orientably faithful.
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Faithful collections of embeddings {fA : lkA → S2}A∈F and
{gA : lkA → S2}A∈F into (non-oriented) spheres are said to be
isopositioned, if there is a family of homeomorphisms {hA : S2 →
S2}A∈F such that hA ◦ fA = gA, for each A ∈ F . Evidently, isopo-
sitioned collections are faithful or not simultaneously. Denote by
E(P ) the set of faithful collections up to isoposition.

The Matveev obstruction m : E(P ) → H1(P ′) is constructed as
follows. For each ε ∈ E(P ) take its representative {gA : lkA →
S2}A∈F . For each non-hanging edge d of P ′, recall the rotations
(the same or the opposite) from the definition of faithful collection
of embeddings. Let m(ε) be the class of the cocycle µ which as-
sumes the value 0 or 1 on d if the rotations are the opposite or the
same, respectively. The class m(ε) is well-defined because for collec-
tions of embeddings, isopositioned via a family of homeomorphisms
{hA : S2 → S2}A∈lkF , the cocycles µ differ by a coboundary of a
cochain κ ∈ C0(P ′), which assumes value 1 or 0 on A depending
on whether hA reverses or preserves orientation of S2, respectively.

Theorem 1.3. A 2-polyhedron P is (orientably) 3-thickenable if
and only if there exists a faithful embedding ε ∈ E(P ) such that
(m(ε) = 0) δm(ε) = 0.

For a proof see [41] and also [49], [37, Theorem 3.2]. �

For special cases there are simpler criteria of 3-thickenability (see
[37]).

2. 2-polyhedra, cohomology of groups and universal

covers

In this section, we discuss the relation between some open prob-
lems in (geometric) group theory and the proper homotopy invari-
ants of the universal cover of a compact 2-polyhedron. We also pose
new questions on 2-polyhedra derived from the above. For this, we
need to recall some algebra from the topological viewpoint.

Given a group G and a K(G, 1)-complex X , the augmented cel-

lular chain complex of the universal cover X̃ of X

C ≡ {· · · → Cn(X̃;Z) → · · · → C0(X̃;Z) → Z → 0}

provides a free ZG-resolution of Z (as trivial ZG-module). This is

because of the contractibility of X̃ and the natural free G-action
we have on it.
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The cohomology of HomZG(C,ZG) gives us the cohomology
groups of G with ZG-coefficients, denoted by Hq(G;ZG), q ≥ 0.

More generally, let G be a group and X be a 2-polyhedron with
π1(X) ∼= G and X̃ as universal cover. Under certain

hypothesis, some of the proper invariants of X̃ are, in fact,
invariants of G which appear to be related to the low dimensional
cohomology groups Hq(G;ZG). For instance, if G is finitely
generated and the 1-skeleton of X is compact, then we can
define the number of ends of G as the number of ends of the univer-
sal cover X̃ of any such 2-polyhedron X , and this number equals
1+ rank(H1(G;ZG)) = 0, 1, 2 or ∞, with H1(G;ZG) being in fact
free abelian (see [14]).

Recall that two proper maps w, w′ : [0,∞) −→ X̃ define the same
end if their restrictions to the natural numbers are properly homo-
topic. The 0-ended groups are the finite groups and the 2-ended
groups are those having an infinite cyclic subgroup of finite index.
On the other hand, Stallings’ splitting theorem characterizes those
groups with more than one end (see [48] for a general reference).

One dimension up, the cohomology group H2(G;ZG) of a finitely
presented group G is related to the semistability at infinity of the
universal cover X̃ of a compact 2-polyhedron X with π1(X) ∼= G,

i.e., whether any two proper rays in X̃ defining the same end are in
fact properly homotopic. If so, we say the group G is semistable at
infinity, as this property does not depend on the choice of such a
2-polyhedron X (see [29]). Geoghegan and Mihalik [19] established
the relation mentioned above by showing that if G is semistable at
infinity then H2(G;ZG) is free abelian.

At this point, there are two questions that still remain open:

Question 2.1. Is any finitely presented group G semistable at infin-
ity?

Question 2.2. Is the cohomology group H2(G;ZG) free abelian for
any finitely presented group G?

If a finitely presented group G is semistable at infinity, then new
invariants, such as proper analogues of the fundamental group, may
be defined (see [18]). Mihalik [30] showed that Question 2.1 may be
reduced to the case G is 1-ended, and there are results in the liter-
ature (see [29]) showing that many 1-ended groups are semistable
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at infinity. On the other hand, Mihalik and Tschantz [31] showed
that this property is preserved under amalgamated products (HNN-
extensions) over finitely generated groups. All one-relator groups
are also known to be semistable at infinity [32].

As indicated above, an affirmative answer to Question 2.1 would
also give us an affirmative answer to Question 2.2. It is known that
H2(G;ZG) is torsion free [19], and Farrell [15] showed that if G
contains an element of infinite order then H2(G;ZG) is either 0,Z
or is not finitely generated. Of course, only those finitely presented
groups which are infinite are of interest, since otherwise the above
cohomology group is trivial.

It is worth mentioning that in higher dimensions (q ≥ 3) there
are finitely presented groups G for which Hq(G;ZG) is a finite non-
trivial group (see [18]). We can translate Question 2.2 into a more
geometric question Question 2.3 as follows. Let G be a finitely
presented group, and X be a compact 2-polyhedron having G as
fundamental group. Then, we have an isomorphism H2

c (X̃;Z) ∼=
H2(G;ZG)⊕ (free abelian) (see [19]), where H∗

c stands for coho-
mology with compact support. Thus, we have:

Question 2.3. Is the cohomology group with compact support
H2

c (X̃;Z) free abelian for any compact 2-polyhedron X?

Note that this would help us to find a condition for recognizing
whether a given non-compact simply connected 2-polyhedron covers
a compact polyhedron.

In trying to answer Question 2.2 (equivalently 2.3), one could
ask the following stronger question for a finitely presented group G
(see [25]):

Question 2.4. Does there exist a compact 2-polyhedron X having G
as fundamental group and whose universal cover X̃ has the proper
homotopy type of a 3-manifold M (with boundary)?

Indeed, an affirmative answer to Question 2.4 would also give
us an affirmative answer to Question 2.3, since the cohomology
group with compact support H2

c (X̃;Z) is isomorphic to H2
c (M ;Z).

Lefschetz duality assures that H2
c (X̃;Z) ∼= H1(M, ∂M ;Z) is free

abelian, since simply connected manifolds are orientable.
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Note that we can not ask for such a proper homotopy equivalence
to be equivariant under the G-action on X̃, for there are groups
which are not 3-manifold groups.

In case there is a positive answer to Question 2.4 for G, we say
that the group G is properly 3-realizable. Of course, the most in-
tuitive way of X̃ having the proper homotopy type of a 3-manifold
is by means of 3-dimensional thickenings, for which there is a well
defined obstruction for the class of those (possibly non-compact)
2-polyhedra which are fake surfaces (see [25, 41]). Using this ob-
struction, it is shown that if G belongs to the class C of those groups
which are the fundamental group of a compact fake surface with
no points of type 3, then G is properly 3-realizable (see [25]). See
also [26] for an extension of this result in case all points of type 3
are sufficiently separated.

On the other hand, it is shown in [6] that there are properly
3-realizable (non 3-manifold) groups which are not in the class C.
More recently, it has been proved in [1] that all 0-ended and 2-ended
groups are properly 3-realizable. This gives a step towards proving
that all ∞-ended groups are also properly 3-realizable, assuming
one could show all 1-ended groups were properly 3-realizable. See
also [1, 7] for recent results regarding the behavior of this property
with respect to direct products and free products with amalgama-
tion (and HNN-extensions). Finally, the question of whether or
not every finitely presented group is properly 3-realizable remains
open.

3. Contractible resolutions of 2-polyhedra by special

2-polyhedra

3.1. Contractible resolutions.

A resolution of a space P is a pair (Q, f), where Q is a space and
f : Q → P is an onto map. We usually think of Q as better in some
sense than P and we think of f as being a good map.

We construct resolutions of polyhedra by maps with simple point-
inverses (i.e. contractible maps) up to polyhedra with simple sin-
gularities and structure (i.e. fake surfaces and special polyhedra).
We begin with a straightforward one-dimensional analogue of our
result. A graph is cubic if its vertices have degree 1, 2 or 3.
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Proposition 3.1.

(a) Every graph is homotopy equivalent to a cubic graph.
(b) Every graph P has a resolution f : Q → P such that Q is cubic
and point-inverses of f are points or arcs. Moreover, if P has no
isolated points, isolated circles or hanging edges, then we can obtain
Q without vertices of degree 1.

Proposition 3.1 is proved essentially by blowing up the vertices into
arcs:

Figure 3.1

An n-dimensional polyhedron P is said to be dimensionaly ho-
mogeneous, if every point of P has arbitrarily small n-dimensional
neighbourhoods. A set of all those points of an n-dimensional poly-
hedron P which have neighborhoods homeomorphic to the
Euclidean n-space, is called the manifolds set of P .

Theorem 3.2.

(a) Every finite 2-polyhedron is homotopy equivalent to a special
polyhedron.

(See [51, Proposition 1]).
(b) For every 2-polyhedron P there exists a fake surface Q and an
onto map f : Q → P with contractible preimages (they are actually
either points or arcs or 2-disks). Moreover, if P is dimensionally
homogeneous and its manifold set is a disjoint union of open disks,
then we can obtain Q to be special (see [44, Theorem 1]).

Note that the proof of 3.2(b) in [44] uses a geometric technique
called the banana and pineapple trick, see page 36 in [21]. See
the references for a detailed description of the proof and of this
technique.
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The manifold set of a 2-polyhedron is the set of points having a
neighborhood homeomorphic to D2. A 2-polyhedron P is dimen-
sionally homogeneous if every point of P has an arbitrarily small
2-dimensional neighborhood. Theorem 3.2(a) can be obtained from
([51], Proposition 1) or from Theorem 3.2(b) by applying the con-
struction from ([21], p. 37).

We conclude this subsection with a conjecture (due to A. Onis-
chenko) on a higher-dimensional generalization of Theorem 3.2(b).
Let Θk be the union of Sk with k+1 disks Dk attached to Sk along
the main equators Sk−1 ⊂ Sk.

Conjecture 3.3. For every n-polyhedron P there is an onto map
f : Q → P with contractible preimages and such that every point
x ∈ Q has a regular neighborhood homeomorphic to the product
In−k−1 × Cone(Θk).

Note that the class of “resolving” polyhedra from this conjec-
ture does not coincide with the class of higher-dimensional special
polyhedra (see [28]).

3.2. Non-existence of contractible resolutions.

Note that in Theorem 3.2(b) the class of fake surfaces cannot be
replaced by certain smaller classes of 2-polyhedra. Clearly, there
exists a 2-polyhedron P which is not homotopy equivalent to a
surface. Indeed, we can take any polyhedron P with π1(P ) ∼= Z3,
because Z3 is not the fundamental group of any surface.

Also, there exists a 2-polyhedron P which is not homotopy equiv-
alent to a fake surface without points of type 3. Indeed, we can take
as P a 2-spine of a homology 3-sphere, because [25, Proposition 1.1]
asserts that the fundamental group of a fake surface without points
of type 3 cannot be a non-trivial perfect group.

Note that a point has a contractible resolution by a special 2-
polyhedron (e.g. by the Bing house with two rooms) but has no
collapsible resolution by a special 2-polyhedron. This is because
every collapsible polyhedron has a “free” face and hence cannot be
special.

Also, the 2-sphere S2 has a contractible resolution by a special
2-polyhedron. The union of a torus with two disks, attached to
the longitude and the meridian of the torus, is mapped to S2 by
shrinking each disk to a point (see Figure 3.2).



502 GARITY ET AL.

.

..
..
.
...
...
..........................

..

.

..

.

..

.

..

.

..

..

..
..
..
..
.
..
.
..
..
.

..

.

..

.

..

..
..
.
..
..
..
...
......

................
...
..
.
..
.
..
.

...
....
...
..
...
..
.
..
..
.
..
..
.
..
.

..

.

..

.

.

..

.

..

.

..

..

.

..

.

..

..

.

..

.

..

..

.

..

..

..

..
..
.
..
..
..
.
..
..
..
..
.
..
..
.
..
.
..
.
..
.
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
...
..
...
..
...
....
...
....
....
.....
......

.........
.......................................................................................

.......
.....
...
....
...
...
...
..
...
..
..
..
..
..
..
..
..
..
..
.
..
..
.
..
..
.
..
..
.
..
.
..
..
.
..
.
..
.
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
..
.
..
..
..
.
..
..
..
..
..
..
..
...
..
..
...
...
...
...
...
.....
.....
.........
........................................................................................

.......
.....
.....
....
...
...
....
..
...
...
..
..
...
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
.
..
.
..
..
..
.
..
.
..
..
.
..
..
..
.
..
..
..
..
..
.
..
..
..
..
.
..
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
...

.

..

.

.

..

..

.

..
..
..
..
.
..
..
..
..
..
..
..
..
..
...
....
.....
..................................

....
...
..
..
..
..
..
.
..
.
..
.
..
.
..
.
..
..
.
..
..
.
..
..
...
..
...
.......
................................

....
....
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
.
..
..
.

...
..
.
..
.
.
..
..
..
.
..
.
..
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
..
.
..
.
..
.
..
.
..
..
.
..
..
..
..
..
..
.

.

..

.

..

.

..

..

.

.

.

..

..

..
..
..
..

.

..

.

..

..

.

..

.

.

.

..

.

..

.

..

.

..

.

.

.

..

..

..

.

...
.

..

..
..
..
.
..
.
.

.

..

.

..

•

Q
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

..

.

..

..

.

..

.

..

..

.

..

..

..

..

..
..
..
..
..
..
.
..
.
..
.
..
..
..
..
.
..
..
..
..
..
..
..
...
..
...
..
....
...
....
.....
..........

......................................................
.......
.....
...
...
...
..
...
..
..
..
..
..
.
..
..
..
.
..
.
..
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
..
.
..
.
..
..
.
..
..
..
..
.
..
...
..
..
..
...
...
....
....
......................................................................

.....
....
....
...
...
...
..
..
...
..
..
..
..
..
..
..
..
..
..
..
.
..
.
..
.
..
..
.
..
..
..
..
.
..
..
..
.
..
..
.
..
.
..
..
.
..
.
..
.

..

.

..

.

..

.

.

..

.

..

.

..

.

..

.

..

.

.

..

.

..

.

..

.

..

.

..

..

.

..

.

..

..

.

.

.

..

..

.

..

.

..

..

.

S2

f

•

Figure 3.2

Salikhov [47] has announced a proof that for a connected 2-
polyhedron, distinct from the point and S2, the conditions of Theo-
rem 3.2(b) are not only sufficient but also necessary for the existence
of a contractible resolution by a special 2-polyhedron.

3.3. Applications of contractible resolutions.

The Whitehead Asphericity Conjecture states that any subcomplex
of an aspherical 2-complex is itself aspherical. Whitehead stated
this conjecture in 1930’s motivated by the problem of description
of relative π2 in terms of generators and relators. From a more
general perspective, computation of π2 of 2-complexes, including
the asphericity of 2-complexes, is a difficult problem that lies at the
heart of the general problem of computing the homotopy groups of
2-complexes.

Examples of aspherical 2-complexes are all surfaces of genus >
0 and also spines of knot spaces. It is interesting to note that
Whitehead’s question was also motivated by unsuccessful attempts
at that time to prove the asphericity of knot spaces. This was
verified much later in the 1950’s by Papakyriakopoulous using the
Sphere theorem.
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It follows from Theorem 3.2(b) that in order to prove the White-
head asphericity conjecture, it would suffice to verify it only for the
case of fake surfaces (see [44]). Indeed, let f : Q → P be a resolu-
tion provided by Theorem 3.2(b). Since the restriction of f to the
preimage f−1(P1) of every subpolyhedron P1 ⊂ P is a homotopy
equivalence (see [23]), the reduction would then follow immediately.

Another application of Theorem 3.2(b) is motivated by the well-
known fact that every 2-manifold embeds into R

4 :

Theorem 3.4. There exists a fake surface (even a special 2-poly-
hedron) Q which does not embed into R4.

Proof. Indeed, let Q be a resolution, given by Theorem 3.2(b), of
the 2-skeleton P of the standard 6-simplex. Suppose that Q embeds
into R

4. It follows from the proof of Theorem 3.2(b) that the non-
trivial preimages of the resolution are those of the points of the
1-skeleton of P . Hence by contracting in R

4 the preimages of the
resolution we obtain R

4 in which P is embedded. This follows
from the 1-LCC shrinking theorems for ANR’s and the comments
following on p.4 in [3]. The latter is well-known to be impossible.

�

It is worth mentioning that the resolutions obtained from The-
orem 3.2(b) are special cases of cell-like resolutions, which play an
important role in geometric topology (see [34]). A polyhedron is
said to be cell-like if and only if it is contractible. Note that this
definition agrees with the standard one, since polyhedra are ANR’s.
An onto map is said to be cell-like, if it is a proper surjective map
with cell-like point-inverses.

4. Regular neighborhoods of polyhedra

A polyhedron K in a closed 3-manifold M is called a spine of
M , if there is a 3-ball D ⊂ M − K such that (M − D) − K ∼=
∂D × [0, 1). This property is equivalent to the property that M −
D collapses to K. The Bing house with 2 rooms is an example of
a special spine of the 3-sphere.

A folklore result asserts that each 3-manifold has a spine which is
a special polyhedron [21]. Casler [8] proved that if two 3-manifolds
have the same special spines, then they are homeomorphic. Casler’s
uniqueness theorem was generalized by Brodsky-Repovš-Skopenkov
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[41] to a classification of 3-manifolds with the same (not necessarily
special) spine, up to a homeomorphism, relative to the spine.

However, a 3-manifold can have several spines. Matveev [28]
proved that if special 2-polyhedra P1 and P2 are spines of the same
3-manifold, then P1 can be obtained from P2 by Tietze moves. Con-
versely, non–homeomorphic 3-manifolds can have the same (non-
special) spine: for 3-manifolds with boundary of genus one this
was first proved by Mitchell, Przytycki, and Repovš [33], and for 3-
manifolds with boundary of higher genera by Cavicchioli, Lickorish,
and Repovš [11].

Recently, Hog-Angeloni and Glock [20] have shown that there
are four obstruction to uniqueness of regular neighborhoods for
compact connected 2-complexes in compact, connected orientable
3-manifolds. If the 3-manifold is prime and not a Poincaré coun-
terexample, and if the regular neighborhood does not contain es-
sential annuli and has connected boundary, then the regular neigh-
borhood is determined by the 2-complex (see also earlier related
results [5], [39] and [40]).

More generally, let us consider inequivalent embeddings of codi-
mension 2 polyhedra into arbitrary PL manifolds. For a polyhedron
X ⊂ M we denote by RM(X) the regular neighborhood of X in
M . Consider the following problem (for 3-dimensional M see [40]):
Find all pairs (m, k) such that if K is a compact k-polyhedron and
M a PL m-manifold, then

(*) RM(fK) ∼= RM(gK), for each two homotopic PL embeddings
f, g : K → M .

The property (*) holds for m ≥ 2k + 2 by general position. In
general, many invariants of RM(fK) and RM(gK) coincide: the
homotopy classes, the homology rings, the higher Massey products,
the (classifying maps of) tangent bundles (and hence also all the
invariants deduced from the tangent bundle, e.g. characteristic
classes and numbers). This implies that (*) also holds for m =
2k +1 (since in this case an m-thickening is completely determined
by its tangent bundle [27] and for m = 2 (since a 2-manifold N with
boundary is completely determined by H1(N) and the intersection
form). Also, for l ≥ 2k + 1 − m,

RM(fK)× I l ∼= RM×I l(fK) ∼= RM×I l(gK) ∼= RM(gK)× I l.



TOPOLOGY OF 2-DIMENSIONAL COMPLEXES 505

The homology ring of ∂RM(fK) does not depend on a homotopy
of f (this follows from the exact sequence of the pair
(RM(fK), ∂RM(fK)) and the Poinaré duality). Also, ∂RM(fK)
is l-connected for m ≥ k + l + 2 and l-connected K. This shows
that distinguishing RM(fK) and RM(gK) is a non-trivial problem
for m ≥ k + 3. The property (*) holds for m = k + 1 ≥ 3 and a
fake surface K (see [8], [28], [40], [41]).

The property (*) fails for:
a) m = k + 1 ≥ 3, M = Sm and K = Sk ∨ S1 ∨ S1 (this was

proved using non connectedness of ∂RM(fK)) (see [40]),
b) M = S3, some K and RM(fK), RM(gK) complements of

knots (see [33], [11]), and
c) M = S4 and a certain 2-polyhedron (the Dunce Hat) K (this

was proved by means of π1(∂RM(fK))) (see [52]).
The same problems for M = Sm (then f and g are always homo-

topic) and also for K a PL manifold are also interesting. A version
of this problem, when the homeomorphism RM(fK) ∼= RM(gK) is
required to be an extension of the homeomorphism g ◦ f−1 : fK →
gK, is better known [27]. For further results on these problems see
[9], [10], [12], [13], [36], [38], [42], and [43].
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