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ABSTRACT

We give explicit palindrome presentations of the groups of rational knots, i.e. pre-
sentations with relators which read the same forwards and backwards. This answers a
question posed by Hilden, Tejada and Toro in 2002. Using such presentations we obtain
simple alternative proofs of some classical results concerning the Alexander polynomial
of all rational knots and the character variety of certain rational knots. Finally, we derive
a new recursive description of the SL(2, C) character variety of twist knots.
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1. Introduction

The aim of this paper is to obtain special presentations of the groups of all rational
knots whose relators are palindromes. This means that the relators read the same
forwards and backwards as words in the generators. The existence of palindrome
presentations for tunnel number one knots was already known by [14]. Let Kα/β

denote the rational knot or 2-bridge knot determined by the pair of coprime odd
integers (α, β) with 1 ≤ β < α. The major contribution in this paper is to explicitly
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find the palindrome presentation for the group of Kα/β in terms of the parameters
α and β. This answers a question posed by Hilden, Tejada and Toro in [14]. To
state our main result, we need some notation. Set ei = (−1)[iβ

−1/α], where β−1

is the inverse of β in Z2α and [x] denotes the integral part of x. By [20, Chap. 6,
Lemma 9.2], we have eα−j = ej , for any j = 1, . . . , α− 1, hence the integer

sα−1 =
α−1∑
j=1

ej = 2

α−1
2∑

j=1

ej

is even. Furthermore, it was proved in [25] that sα−1 is the signature of Kα/β .
Through the paper, the letter x in the center of a relator has been made bold to
make it clearer that the relator is palindrome.

Theorem 1.1. The group of the rational knot Kα/β , α and β odd and coprime,
1 ≤ β < α, admits the palindrome presentation

π(α/β) = 〈θ, x : u(α/β) = 1〉,
where

u(α/β) = (θ−
sα−1

2 xθe1x−1θe2xθe3 · · ·x−εθe(α−1)/2 )xε

×(θe(α−1)/2x−ε · · · θe3xθe2x−1θe1xθ−
sα−1

2 )

and ε = +1 (respectively, −1) if (α − 1)/2 is even (respectively, odd).

In the appendix, we give explicit presentations for particular families of rational
knots.

Then, we use the palindrome presentation in Theorem 1.1 to give a very simple
proof of a classical result of Minkus [20, Chap. 6, Lemma 11.1] on the Alexander
polynomial of all rational knots. Furthermore, these presentations allow us to obtain
a recursive description of the SL(2,C) character variety for twist knots. This con-
firms the utility of the palindromic presentations of knot groups. We remark that
the term “character variety” is used in different forms in the literature. Here the
character variety includes characters of both abelian and non-abelian representa-
tions of a knot group π in SL(2,C) (or PSL(2,C)), and denote it by X(π) (or
∧
X(π)). Of course, there is a natural map from X(π) to

∧
X(π) since SL(2,C) is

a 2-fold covering of PSL(2,C) = SL(2,C)/{±I2}. We use the symbol X irr(π) to
denote the union of all algebraic components of the character variety X(π) con-
taining characters of irreducible (and hence non-abelian) representations. People
working in hyperbolic geometry are interested in representations of a finitely gener-
ated group G in PSL(2,C) because this last group can be identified with the group
of orientation preserving isometries of the hyperbolic 3-space. Gonzáles-Acuña and
Montesinos explained in [10] under what conditions representations into PSL(2,C)
lift to SL(2,C). They postulated the existence of a homomorphism ψ from a free
product of free abelian groups Si into G such that ψ induces an epimorphism on the
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second homology with Z2 coefficients. Then a homomorphism γ : G → PSL(2,C)
lifts to SL(2,C) if and only if, for each i, γ ◦ψ(Si) is not isomorphic to Z2⊕Z2 (see
[10, Lemma 2.3 and Corollary 2.4]). Examples of such G are the link groups, where
the Si can be taken to be peripheral subgroups and ψ|Si : Si → G the inclusions.
Furthermore, we recall that a 2-bridge knot group is torsion free (see [22, Lemma
3]). Recently, Hoste and Shanahan have obtained in [17] a recursive description of
the PSL(2,C) character variety for twist knots. In Sec. 4, we shall point out how it
is related with our description in Theorem 1.2, and in what sense they differ.

Theorem 1.2. The character variety of the rational knot Kα/β , where α
β = 4n+1

2n+1 ,

n ≥ 1, (which is equivalent to the twist knot K2n defined by the fraction α
β′ = 4n+1

2 )
is given by the equation q2,n = 0 in C2. The polynomials q0,n, q1,n and q2,n satisfy
the following recursive formulas:

q0,n = X0q0,n−1 +X1q1,n−1 +X2q2,n−1,

q1,n = Y0q0,n−1 + Y1q1,n−1 + Y2q2,n−1,

q2,n = Z0q0,n−1 + Z1q1,n−1 + Z2q2,n−1,

where


X0 =
3
2
y2z2 +

1
2
y4 − 2y2 − 3

2
yz4 + z4 − 2z2 − y3z2 + 2yz2 +

1
2
y2z4 + 1,

X1 =
5
4
y3z2 +

1
4
y5 − 3

2
y3 + 2yz4 − 4yz2 − z4 − 5

4
y2z4 + 2y + 2z2 − 1

2
y4z2

+ y2z2 +
1
4
y3z4,

X2 =
1
4
y2z3 − 1

2
y3z3 +

1
4
y4z − 3

2
y2z +

1
2
y3z − 3

4
yz5 +

1
2
z5 − 2z3 +

5
2
yz3

+ 2z − 2yz + 1
4y

2z5,


Y0 = 2yz2 + y3 − 2y − 2y2z2 + 3z2 + yz4 − 2z4,

Y1 = 2y2z2 +
1
2
y4 − 2y2 +

3
2
yz2 − 3z2 − y3z2 − 2yz4 + 2z4 +

1
2
y2z4 + 1,

Y2 = −y2z3 +
1
2
y3z − 2yz + y2z +

7
2
z3 − 2z +

1
2
yz5 − z5,



Z0 = −yz3 + y2z + 2z3 − 2z − yz,

Z1 = 2yz3 +
1
2
y3z − 2yz − 2z3 − 1

2
y2z3 − 1

2
y2z + 2z,

Z2 =
1
2
y2z2 − 1

2
yz4 + z4 − 3z2 +

1
2
yz2 + 1.

Here we start with q0,0 = (1/2)y, q1,0 = 1 and q2,0 = 0.

For n = 1, we immediately get q2,1 = z(y−2)(y2−y(z2−1)+z2−1) = 0 which
gives the equation of the character variety of the figure eight knot K5/3, which is
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originally due to Whittemore:

Corollary 1.3 [27, Theorem 1]. Let π = π(5/3) = 〈θ, x : u(5/3) = 1〉 with

u(5/3) = xθ−1x−1θxθx−1θ−1x

be a palindrome presentation of the group of Listing’s knot (i.e. the figure-eight knot
K5/3). Then, the character variety X irr(π) is given by

X irr(π) = {(y, z) ∈ C
2 : y2 − y(z2 − 1) + z2 − 1 = 0},

where y and z are complex numbers such that y 	= 2 and y 	= z2 − 2.

For n = 2 we obtain the following result:

Corollary 1.4. Let π = π(9/5) = 〈θ, x : u(9/5) = 1〉 with

u(9/5) = (xθ−1x−1θ)2x(θx−1θ−1x)2

be a palindrome presentation of the group of K9/5. Then, the polynomial

y4 + y3(1 − 2z2) + y2(z2 − 1)(z2 + 3) + y(z2 − 1)(2 − 3z2) + 2z4 − 4z2 + 1 = 0,

where y and z are complex numbers such that y 	= 2 and y 	= z2 − 2, is the defining
polynomial for the character variety X irr(π) of K9/5.

As a final application we give an alternative proof of a result obtained in [12]
on the character variety of K7/3.

Theorem 1.5 [12, Theorem 2.5, case p=7]. Let π = π(7/3) = 〈θ, x : u(7/3) =
1〉 with

u(7/3) = θ−1xθx−1θ−1xθx−1θxθ−1x−1θxθ−1

be a palindrome presentation of the group of the knot K7/3. Then, the polynomial

y3 − y2(2z2 − 1) + y(z2 − 1)(z2 + 2) − 2z4 + 4z2 − 1 = 0,

where y and z are complex numbers such that y 	= 2 and y 	= z2 − 2, is the defining
polynomial for the character variety X irr(π) of K7/3.

We now describe the contents of the next sections in this paper. In Sec. 2,
we give the basic definitions on cyclic presentations of groups, and discuss their
connection with the topology of closed 3-manifolds. Then, we recall in detail the
Minkus construction of a polyhedral scheme for the cyclic covering Mn(Kα/β) of
the 3-sphere branched over the 2-bridge knot Kα/β. Theorem 2.1 in this section
states that the fundamental group of Mn(Kα/β) admits a cyclic presentation whose
associated polynomial is essentially the Alexander polynomial of Kα/β. In Sec. 3, we
introduce the split extension of a cyclically presented group, and prove Theorem 1.1.
As an application, we reprove the formula for the Alexander polynomial of Kα/β ,
first obtained by Minkus in [20]. Then, we compare the results with those given by
Fukuhara in [9]. In Sec. 4, we consider character varieties for certain rational knots.



March 31, 2009 9:34 WSPC/134-JKTR 00696

Palindrome Presentations of Rational Knots 347

We prove Theorem 1.2 which gives a recursive description of the SL(2,C) character
variety of the twist knots. Then, we write explicitly the equations of the character
varieties of K5/3 and K9/5 as special cases. This reproves a classical result for the
character variety of the figure eight knot, given by Whittemore in [27] (see also [11,
13, and 19, Chap. 4, Exercise 4.4.4]), and a result on the character variety of K7/3,
given by Hilden, Lozano and Montesinos in [12].

2. Preliminaries

2.1. Cyclic presentations

Cyclically presented groups constitute a class of groups which are very interesting
from a topological point of view. There are many connections between such groups
and cyclic branched coverings of knots (see, for example, [4] and references therein).
Here we briefly recall some basic definitions. Let Fn denote the free group of rank
n on free generators x1, . . . , xn. Let θ : Fn → Fn be the automorphism of order n
such that θ(xi) = xi+1, i = 1, . . . , n, where the indices are taken mod n. For any
reduced word w in Fn, let us consider the quotient group Gn(w) = Fn/R, where R
denotes the normal closure of the set {w, θ(w), . . . , θn−1(w)} in Fn. A group G is
said to have a cyclic presentation if G is isomorphic to Gn(w) for some w and n.
Of course, θ induces an automorphism of Gn(w) which determines an action of the
cyclic group Zn = 〈θ : θn = 1〉 on Gn(w). The polynomial associated with Gn(w)
is defined to be fw(t) :=

∑n−1
i=0 ait

i, where ai is the exponent sum of xi in w. More
information on cyclic presentations can be found for example in [18].

2.2. Schubert diagrams of rational knots

Let K be a knot in the oriented 3-sphere S3. A closed 3-manifold M is called
an n-fold cyclic branched covering of K if M is the n-fold cyclic covering of S3

branched over K (see, for example, [23, Chap. 10, Sec. C]). We now recall some
classical results on rational knots. As it is well-known, any rational knot or 2-bridge
knot Kα/β is completely determined by a pair of coprime odd integers (α, β) with
1 ≤ β < α. A standard diagram for Kα/β is given by the Schubert normal form (see
[3, Chap. 12, Sec. A]) which can be obtained as follows (see Fig. 1): each bridge is
divided into α segments, and the points are numbered from 0 to 2α−1 modulo 2α.
The point labeled 0 in the top bridge is joined to the crossing point labeled β in
the bottom bridge.

Next, one meets the top bridge at 2β, and then meets the bottom bridge at
3β. This is to be repeated until one reaches the point numbered αβ ≡ α (mod 2α)
of the bottom bridge. Similarly, one starts from the point labeled 0 in the bottom
bridge and meets the top bridge at β, and next meets the bottom bridge at 2β, and
then meets the top bridge at 3β. This is to be repeated until one reaches αβ ≡ α

(mod 2α) of the top bridge. Of course, we complete the construction to obtain a
planar regular projection of the knot. We assign a coefficient ej = ej(α, β)(= ±1)
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Fig. 1. The 2-bridge knot Kα/β = K5/3 (i.e. the figure eight-knot)

to each crossing point labeled j, 1 ≤ j ≤ α− 1, of the top bridge, according to the
rule illustrated in Fig. 1. In particular, we have ej(α, β) = (−1)[jβ−1/α], where β−1

is the inverse of the element β in Z2α and [x] denotes the integral part of x (see [20,
Chap. 6, Lemma 9.1]). The group π(α/β) = π1(S3\Kα/β) of Kα/β has the finite
presentation π(α/β) ∼= 〈x, y : Ly = xL〉, where L = ye1xe2 · · · yeα−2xeα−1 (see, for
example [20, Chap. 6, Proof of Lemma 11.1]). The free calculus of Fox [8] (see also
[6]) was used in [20] to compute the Alexander polynomial ∆α/β(t) of Kα/β from
the above presentation. More precisely, we have

∆α/β(t) =
α−1∑
r=0

(−1)rt,

where s0 = 0 and sr = sr(α, β) =
∑r

j=1 ej(α, β).

2.3. The Minkus construction

Let Mn(Kα/β) denote the n-fold cyclic covering of Kα/β. Then, the fundamental
group of Mn(Kα/β) has a cyclic presentation which depends on the coefficients sr

(see [20], for different cyclic presentations of such a class of manifolds, see also
[1, 5, 21]). This was proved in [20] by using a polyhedral scheme which represents
Mn(Kα/β). A standard way to construct closed 3-manifolds consists of the pairwise
identification of oppositely oriented boundary faces of a triangulated 3-ball. The
quotient space is a closed 3-manifold if and only if its Euler characteristic vanishes
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(see [24]). A polyhedral representation of the n-fold cyclic branched coverings of two-
bridge knots and links was given by Minkus in [20] (other combinatorial descriptions
can be found in [1, 5, 21]). Now, we recall the Minkus construction of a polyhedral
scheme for the manifold Mn(Kα/β), where Kα/β is the 2-bridge knot of type (α, β),
α and β odd and coprime, and 1 ≤ β < α. Let us consider the unit 3-ball B3 in
R

3, and set S
2 = ∂B3. On the bounding 2-sphere S

2 draw n equally spaced great
semicircles joining the north pole N ≡ (0, 0, 1) to the south pole S ≡ (0, 0,−1).
This decomposes S2 into n congruent lunes. Subdivide each semicircle into α equal
segments by drawing α − 1 equally spaced vertices on each semicircle. Then, each
lune can be looked at as a curvilinear 2α sided polygon on S2. Now, bisect each
lune by drawing a great circle arc ci inside the lune joining the vertex which is
β segments down from N on each semicircle to the vertex β segments up from S

on the next clockwise semicircle. The construction is illustrated in Fig. 2, where
S2 = R2 ∪ {∞} and S = ∞. We have decomposed S2 into 2n congruent regions
Ri and R′

i, i = 1, . . . , n. Each region can be looked at as a curvilinear α + 1
sided polygon. The regions Ri surround N in clockwise order, and the regions R′

i

are obtained from Ri by moving counterclockwise to the adjacent lune and then
shifting from the northern to the southern hemisphere of S2. The quotient 3-complex
Mn(Kα/β) is constructed from B3 by pasting Ri to R′

i in such a way that ci ⊂ ∂Ri

Fig. 2. The Minkus polyhedral schemata for the manifolds Mn(Kα/β).
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is identified with ci−1 ⊂ ∂R′
i. To show that Mn(Kα/β) is a closed 3-manifold it

suffices to calculate its Euler characteristic which must be zero. In fact, there are:
one 3-cell, n faces (arising from the n pairs Ri ≡ R′

i), two vertices N and S, and
n+ 1 1-cells a1, . . . , an, c. Then we have χ(Mn(Kα/β)) = 2 − (n+ 1) + n− 1 = 0,
as requested. Here a1, . . . , an (in clockwise order) denote n distinct oriented edges
surrounding the central vertex N and all pointing toward the center of the diagram.
Furthermore, the edge c in Mn(Kα/β) arises from the identification of the equivalent
edges ci, i = 1, . . . , n. Figure 2 can also be used to obtain a nice presentation for
π1(Mn(Kα/β)) which corresponds to a spine (and hence to a Heegaard diagram) of
the considered manifold.

If S is taken as the base point, then the closed paths xi = aic
−1, i = 1, . . . , n,

give rise to a set of generators for π1(Mn(Kα/β)). Each 2-cell Ri ≡ R′
i gives the

following relation between the generators x1, . . . , xn:

xix
−1
i+s1

xi+s2x
−1
i+s3

· · ·x−1
i+sα−2

xi+sα−1 ,

where sr = sr(α/β) =
∑r

i=1 ei(α, β) and subscripts are reduced mod n. This is a
cyclic presentation with defining word

w = w(α/β) := x0x
−1
s1
xs2x

−1
s3

· · ·x−1
sα−2

xsα−1 ,

hence π1(Mn(Kα/β)) ∼= Gn(w) = Gn(α/β). The polynomial associated with
Gn(α/β) is precisely

fα/β(t) = 1 − ts1 + ts2 − ts3 + · · · − tsα−2 + tsα−1 =
α−1∑
r=0

(−1)rtsr ,

where s0 = 0 by convention. Minkus shows in [20] that fα/β(t) is in fact the Alexan-
der polynomial of Kα/β . The following result collects the statements of [20, Theo-
rems 7, 10 and Lemma 11.1].

Theorem 2.1 (Minkus [20]). (a) The manifold Mn(Kα/β), constructed above,
is the n-fold cyclic covering of the 3-sphere branched over the 2-bridge knot Kα/β ,

α, β odd and coprime, and 1 ≤ β < α.
(b) The fundamental group of Mn(Kα/β) admits the cyclic presentation

Gn(α/β) = 〈x1, . . . , xn : xix
−1
i+s1

xi+s2x
−1
i+s3

· · ·x−1
i+sα−2

xi+sα−1 = 1

(i = 1, . . . , n; subscripts mod n)〉
which corresponds to a spine of the manifold.

(c) The polynomial fα/β(t) associated with Gn(α/β) coincides, up to units in
Z[t, t−1], with the Alexander polynomial ∆α/β(t) of Kα/β.

3. Palindrome Presentations

Let Gn(w) be a cyclically presented group with generators x1, . . . , xn and defining
word w = w(x1, . . . , xn). The automorphism θ such that θ(xi) = xi+1 (subscripts
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mod n) determines an action of the cyclic group Zn = 〈θ : θn = 1〉 on Gn(w). Let
Hn(v) denote the split extension group of Gn(w) by Zn = 〈θ : θn = 1〉. The group
Hn(v) has a presentation of the form Hn(v) = 〈θ, x : θn = 1, v(θ, x) = 1〉, where
v(θ, x) is obtained from the word w by substituting any generator xi with θixθ−i,
and x = x0 = xn. We see that the group Gn(α/β) has the cyclic automorphism θ

which sends xi to xi+1 (subscripts mod n). This automorphism corresponds to the
rotational symmetry (also denoted by θ) of the polyhedral scheme of Mn(Kα/β)
such that θ(Ri) = Ri+1 and θ(R′

i) = R′
i+1, where the indices are taken mod n.

Let us consider the split extension group Hn(α/β) of Gn(α/β) by the cyclic group
Zn = 〈θ : θn = 1〉. Then Hn(α/β) has a finite presentation with generators θ and
x = x0 = xn, and relations θn = 1, and

v(α/β) = xθs1x−1θs2−s1xθs3−s2x−1θs4−s3 · · · θsα−2−sα−3x−1θsα−1−sα−2xθ−sα−1

= xθe1x−1θe2xθe3x−1θe4 · · · θeα−2x−1θeα−1xθ−sα−1 = 1

obtained from w(α/β) by substituting any xi with θixθ−i. Then we have

Theorem 3.1. Let On(α/β) be the 3-dimensional orbifold whose underlying space
is S3 and whose singular set is the 2-bridge knot Kα/β with branching index n. The
split extension group Hn(α/β) = 〈θ, x : θn = 1, v(α/β) = 1〉, where

v(α/β) = xθe1x−1θe2xθe3x−1θe4 · · · θeα−2x−1θeα−1xθ−sα−1

is isomorphic to the fundamental group of the orbifold On(α/β). The group presen-
tation 〈θ, x : v(α/β) = 1〉 defines the knot group π(α/β) of Kα/β , and the generator
θ corresponds to a meridian of the knot.

Proof. The group Gn = Gn(α/β) can be embedded as a normal subgroup of index
n in Hn = Hn(α/β). The map φ : Gn → Hn, defined by φ(xi) = θixθ−i, gives the
desired embedding. Furthermore, Gn is isomorphic to the normal closure of x in
Hn, and there is a short exact sequence

1 → Gn
φ→ Hn → Zn → 1,

where Zn = 〈θ : θn = 1〉. Let us consider the quotient space obtained from Mn =
Mn(Kα/β) under the action of the rotational symmetry (also denoted by θ) of the
polyhedral scheme of Mn. This quotient space is a 3-dimensional orbifold, denoted
by On = On(α/β), whose underlying space is S

3 and whose singular set is the
2-bridge knot Kα/β with branching index n (use Theorem 2.1). The n-fold covering
map Mn → On induces a group embedding Gn �Ωn, where Ωn = Ωn(α/β) denotes
the fundamental group of On. In particular, we have [Ωn : Gn] = n, and Ωn fits in
a short exact sequence 1 → Gn → Ωn → Zn → 1, where Zn is generated by the
rotational symmetry θ. Now, Five Lemma implies the isomorphism Hn

∼= Ωn.

Theorem 3.1 implies Theorem 1.1 because eα−j = ej , for every j = 1, . . . , α−1,
and sα−1 is even.
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Proof of Theorem 2.1(c). We will use the free calculus of Fox to compute the
Alexander polynomial ∆α/β(t) of Kα/β from the presentation of π(α/β) given in
Theorem 3.1. Let πab = πab(α/β) (∼= Z) denote the abelianized group of π =
π(α/β), and η : Zπ → Zπab = Z[t, t−1] the abelianization map between the group
rings. Then η(x) = 0 and η(θ) = t. Recall that the free derivatives of Fox satisfy the
characteristic properties ∂(uv)

∂x = ∂u
∂x + u ∂v

∂x and ∂u−1

∂x = −u−1 ∂u
∂x , for u and v ∈ Fn.

In our case, the Alexander polynomial ∆α/β(t) ofKα/β is equal to η(∂v(α/β)
∂x ), where

v(α/β) is the word defining Hn(α/β) in Theorem 3.1. So we get

∂v(α/β)
∂x

= 1 + x
∂

∂x
(θe1x−1θe2xθe3x−1 · · · θeα−2x−1θeα−1xθ−sα−1)

= 1 + xθs1
∂

∂x
(x−1θe2xθe3x−1 · · · θeα−2x−1θeα−1xθ−sα−1 )

= 1 + xθs1

(
−x−1 + x−1 ∂

∂x
(θe2xθe3x−1 · · · θeα−2x−1θeα−1xθ−sα−1)

)

= 1 − θs1 + θs2
∂

∂x
(xθe3x−1 · · · θeα−2x−1θeα−1xθ−sα−1)

...

= 1 − θs1 + θs2 − · · · + θsα−3 − θsα−2 + θsα−1
∂

∂x
(xθ−sα−1 )

=
α−1∑
r=0

(−1)rθsr ,

since ∂
∂x (xθ−sα−1 ) = 1 and s0 = 0. Thus we have ∆α/β(θ) := η(∂v(α/β)

∂x ) by [8], and
hence ∆α/β(t) = fα/β(t), as required.

Now, we compare the Minkus formula for the Alexander polynomial of Kα/β

with the results obtained by Fukuhara in [9]. There he introduced the following
functions:

εi(α, β) := (−1)[iβ/α],

µ(α, β) :=
α−1∑
i=1

εi(α, β),

νk(α, β) := 1 +
α−1∑
i=1

εk+i(α, β),

for 0 < i, k < α. Then, Fukuhara gave an explicit formula for the normalized
Alexander polynomial, D = Dα/β(t) say, of Kα/β. This polynomial satisfies the
properties D(1) = 1 and D(t−1) = D(t).

Theorem 3.2 [9, Theorem 1.2(1)]. For the 2-bridge knot Kα/β, we have

Dα/β(t) =
1
2
(t−µ/2 + tµ/2) − 1

4
(t−1/2 − t1/2)

α−1∑
i=1

(−1)iεi(t−νi/2 − tνi/2).
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The following result relates the Minkus formula to that of Fukuhara.

Theorem 3.3.

Dα/β(t) = t−
sα−1

2 ∆α/β(t) =
α−1∑
r=0

(−1)rt(2sr−sα−1)/2.

Proof. As usual α and β are relatively prime odd integers, 1 ≤ β < α. Let β′ be
the unique solution of the congruence ββ′ ≡ 1 (mod 2α). The fraction α/β gives
the same 2-bridge knot as the fraction α/β′. Of course we have

εi(α, β′) = (−1)[iβ
′/α] = (−1)[iβ

−1/α] = ei(α, β)

and

µ(α, β′) =
α−1∑
i=1

εi(α, β′) =
α−1∑
i=1

ei(α, β) = sα−1(α, β).

Using a 2-bridge diagram for Kα/β′ we find that π1(S3\Kα/β′) has a Wirtinger
presentation 〈x, y : L1y = xL1〉, where L1 = yε1xε2 · · · yεα−2xεα−1 . Therefore we
have the Wirtinger presentation for Kα/β: π1(S3\Kα/β) ∼= 〈x, y : Ly = xL〉, where
L = L(α, β) = ye1xe2 · · · yeα−2xeα−1 = L1(α, β′) = L1. Let δ : ZF (x, y) → Z[t, t−1]
be an abelianization map such that δ(x) = t and δ(y) = t. Since 〈x, y : Ly = xL〉 is
the Wirtinger presentation of Kα/β , we know that δ(∂L−1xLy−1

∂x ) is the Alexander
polynomial of Kα/β. By [20, Proof of Lemma 11.1] and [9, Proof of Lemma 4.1 and
formula (4.2)], we obtain

∆α/β(t) = δ

(
∂L−1xLy−1

∂x

)
= t−sα−1

(
1 + (t− 1)δ

(
∂L

∂x

))

= t−sα−1

(
1 + (t− 1)δ

(
∂L1

∂x

))
= t−sα−1tµ/2Dα/β(t)

= t−
sα−1

2 ∆α/β(t),

where µ = µ(α, β′) = sα−1.

4. Character Varieties

To study hyperbolic structures on the complement of a knot in S3, it is natural
to consider the representations, up to conjugation, of the knot group in SL(2,C).
The set of conjugacy classes of both abelian and nonabelian representations turns
out to be a closed algebraic set, called the character variety of the knot [7]. It
is the set of roots of complex variable polynomials. For 2-bridge knots Kα/β the
character variety is determined by a polynomial in two complex variables, and the
computation was done by using a recursion procedure (see [2, 3, 26]). As observed in
[12], it would be preferable to have an explicit formula in the variables α and β. Such
a formula seems to exist if β is fixed. Explicit computations were done in [12] for
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β = 3. Further results on the recursive calculation of the PSL(2,C) character variety
and the A-polynomial of certain 2-bridge knots can be found in [15–17]. In this
section, we shall make various computations, by using our palindrome presentation
of a rational knot. For this, we need some results from [14]. Let M(2,C) be the
vector space of all complex number square matrices of order 2. Let i denote the
linear transformation of M(2,C) defined by i( x y

z t ) := ( t −y
−z x ). Then i is an

anti-involution, and has eigenvalues 1 and −1 with corresponding eigenspaces V1

(scalars) and V2 (trace zero matrices) of complex dimension 1 and 3, respectively:

V1 =

{(
x 0

0 x

)
: x ∈ C

}
∼= C V2 =

{(
x y

z −x

)
: x, y, z ∈ C

}
.

Decompose M(2,C) into the direct sum of scalars plus trace zero matrices. Then
for any X ∈ M(2,C), we can write X = X+ + X−, where X+ = 1

2 (X + i(X)),
X− = 1

2 (X − i(X)), X+ is scalar and X− has trace zero. For A,B ∈ M(2,C) we
set A+ = a, B+ = b, and (A−B−)+ = c, where a, b, c ∈ C. It is easy to verify the
following identities (see [14]):

(1) i(A−) = −A−.
(2) A−B− +B−A− = 2c.
(3) If A,B ∈ SL(2,C), then (A−)2 = a2 − 1 and (B−)2 = b2 − 1.
(4) i(A) = a−A−.
(5) If A ∈ SL(2,C), then i(A) = A−1 = a−A−.

For the traces, we have tr(A) = 2a, tr(B) = 2b, tr(AB) = 2(ab + c) and
tr(AB−1) = 2(ab− c).

Theorem 4.1 [14, Lemma 6.4 and Theorem 6.5]. If A and B are any elements
of SL(2,C), and W = W (A,B) is a word in A,B,A−1, B−1, then

W = p1I2 + p2A
− + p3B

− + p4A
−B−,

where pi = pi(a, b, c) ∈ Z[a, b, c] for every i = 1, . . . , 4. If W is a palindrome in
SL(2,C), then the term A−B− disappears, that is, p4(a, b, c) ≡ 0.

Suppose that we have a knot group defined by a presentation π = 〈θ, x : w = 1〉,
where w is a palindrome. To get a representation in SL(2,C), we consider the
correspondences x→ A, θ → B, and w → I2. Therefore, W (A,B) = p1I2 +p2A

− +
p3B

− = I2 gives p1 = 1 and p2 = p3 = 0. As it was shown in [14], p1 = 1 follows
from the other two equations. So we have:

Theorem 4.2 [14, Theorem 6.8]. If π is a 2-generator knot group defined by
a palindrome word, then its character variety of all nonabelian representations into
SL(2,C) is an affine algebraic subset of C3 given by

{(a, b, c) ∈ C
3 : p2(a, b, c) = 0, p3(a, b, c) = 0, c2 	= (a2 − 1)(b2 − 1)}.

For our computations, we need the following lemma.
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Lemma 4.3. If W = W (A,B) is a palindrome of length n in SL(2,C), espre-
ssed as

W = q
(n)
0 I2 + q

(n)
1 A− + q

(n)
2 B−,

then W ′ = AεWAε and W ′′ = BεWBε, ε = ±1, are palindromes of length at most
n+ 2 with coefficients

W ′



q
(n+2)
0 = (2a2 − 1)q(n)

0 + 2εa(a2 − 1)q(n)
1 + 2εacq(n)

2 ,

q
(n+2)
1 = 2εaq(n)

0 + (2a2 − 1)q(n)
1 + 2cq(n)

2 ,

q
(n+2)
2 = q

(n)
2 ,

W ′′



q
(n+2)
0 = (2b2 − 1)q(n)

0 + 2εbcq(n)
1 + 2εb(b2 − 1)q(n)

2 ,

q
(n+2)
1 = q

(n)
1 ,

q
(n+2)
2 = 2εbq(n)

0 + 2cq(n)
1 + (2b2 − 1)q(n)

2 .

Proof. Replace Aε, ε = ±1, by a + εA−, multiply out and use the identities
above.

Using the palindrome presentations for rational knots of the form α/β = 4n+1
2n+1 ,

n ≥ 1, we can now obtain a recursive formula which describes the SL(2,C) character
variety of such knots. First we note that these rational knots are the twist knots
K2n depicted in Fig. 3 (see, for example, [3, Chap. 15, Sec. A]).

In fact, the diagram in Fig. 3 determines the continued fraction α/β′ =
[2n;−2] = 2n + 1

2 = 4n+1
2 . So, for example, [2;−2] gives the figure eight knot

K5/2, and [4;−2] represents the knot K9/2. Recall that two 2-bridge knots with
fractions α/β and α/β′ are ambient isotopic if and only if β′ ≡ β±1 (mod α) (see,
for example [3, Chap. 12, Theorem 12.6]). Thus, the fraction α/β′ = 4n+1

2 gives the
same 2-bridge knot as the fraction α/β = 4n+1

2n+1 .
Application of Lemma 4.3 (use also c = b(a − 1)) yields Theorem 1.2 on the

recursive calculation of the SL(2,C) character variety of twist knots K2n. Hoste
and Shanahan obtained in [17] a recursive description of the PSL(2,C) character

Fig. 3. The twist knot K2n.
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variety for the twist knot K2m, m < 0, defined by the fraction (4m− 1)/2 (that is,
the mirror image of K2n, n = −m, defined by (4n+ 1)/2). Their result is based on
the Riley polynomials rm(x, z) ∈ Z[x, z] which can be defined recursively by

rm+1(x, z) − t(x, z)rm(x, z) + rm−1(x, z) = 0,

where t(x, z) = 2 + 2x− 2z − xz + z2 and with initial conditions r0(x, z) = 1 and
r1(x, z) = z−1 (see also [22]). Now [17, Lemma 1] states that (x−z)rm(x, z) is the
defining polynomial of the PSL(2,C) character variety of K2m. In particular, for the
figure-eight knot and K9/5 one gets the polynomials r−1(x, z) = z2−(x+3)z+2x+3
and r−2(x, z) = z4− (2x+5)z3 +(x2 +9x+11)− (4x2 +15x+12)z+4x2 +10x+5,
respectively. Our recursive description in Theorem 1.2 (see also Corollary 1.3 and
Corollary 1.4) of the SL(2,C) character variety of K2n, n = −m > 0, is significantly
different from the PSL(2,C) version given in [17].

Proof of Theorem 1.2. A palindrome presentation for the rational knot of the
form α/β = 4n+1

2n+1 has defining word u(α/β) = (xθ−1x−1θ)nx(θx−1θ−1x)n. Sending
x and θ to A and B, respectively, the palindrome u(α/β) gives the relation

R(A,B) = (AB−1A−1B)nA(BA−1B−1A)n = I2

in SL(2,C), which is equivalent to

AB−1 = (A−1BAB−1)nB−1(A−1BAB−1)−n.

Thus, AB−1 is conjugate to B−1, hence c = b(a− 1). For n ≥ 1, we set

(AB−1A−1B)nA(BA−1B−1A)n = q0,nI2 + q1,nA
− + q2,nB

−,

where qi,n ∈ Z[a, b, c], i = 0, 1, 2. This gives the recursive equation

q0,nI2 + q1,nA
− + q2,nB

−

= AB−1A−1B(q0,n−1I2 + q1,n−1A
− + q2,n−1B

−)BA−1B−1A.

Now the result follows by using Lemma 4.3, where tr(A) = y and tr(B) = z.

To illustrate a special case of Theorem 1.2, we determine the character variety
of the figure eight knot K5/3, which is originally due to Whittemore [27]. For n = 1,
Theorem 1.2 gives q2,1 = z(y−2)(y2−y(z2−1)+z2−1) = 0 from which we obtain
the equation in Corollary 1.3.

Proof of Corollary 1.3. Sending x and θ to A and B, respectively, gives the
relation R(A,B) = AB−1A−1BABA−1B−1A = I2 in SL(2,C). Hence, we get
AB−1 = (A−1BA)B−1(A−1BA)−1, that is, AB−1 is conjugate with B−1. This
implies that tr(AB−1) = tr(B−1), so c = b(a − 1). The relation R(A,B) = I2 is
equivalent to A−1BABA−1 = BA−2B which has palindrome words on both sides.
Starting from A = a + A− (hence q(1)0 = a, q(1)1 = 1 and q

(1)
2 = 0) and applying

Lemma 4.3 twice, we have

A−1BABA−1 = q
(5)
0 I2 + q

(5)
1 A− + q

(5)
2 B−,
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where



q
(5)
0 = −4a3 + 3a− 8ab2 + 2b2 + 8a2b2,

q
(5)
1 = 4a2 − 8ab2 + 4b2 − 1,

q
(5)
2 = 4ab− 2b.

Starting from A−2 = (a−A−)2 = 2a2−1−2aA− (hence q(2)0 = 2a2−1, q(2)1 = −2a
and q(2)2 = 0) and applying Lemma 4.3, we obtain

BA−2B = q
(4)
0 I2 + q

(4)
1 A− + q

(4)
2 B−,

where



q
(4)
0 = 4ab2 − 2a2 − 2b2 + 1,

q
(4)
1 = −2a,

q
(4)
2 = 4ab− 2b.

Thus, q(5)2 = q
(4)
2 is an identity, q(4)0 − q

(5)
0 = (a − 1)(q(5)1 − q

(4)
1 ), and q

(5)
1 = q

(4)
1

gives the equation 4a2 − 8ab2 + 4b2 + 2a− 1 = 0, which becomes the equation from
the statement, by setting 2a = y and 2b = z. The condition c2 	= (a2 − 1)(b2 − 1),
where c = b(a − 1), is a consequence of the irreducibility of the representation. It
gives a 	= 1 and a 	= 2b2 − 1, so y 	= 2 and y 	= z2 − 2.

Remark. Using a variable substitution of θ = u and x = v−1u (hence v = θx−1)
in the palindrome u(5/3), one obtains the word R(u, v) = v−1u−1vuv−1uvu−1v−1u

considered in [27]. The correspondences x → A, θ → B, u → U and v → V in
SL(2,C) imply tr(B) = tr(U) = z and y = tr(A) = tr(V −1U) = z2 − w, since
tr(U) = tr(V ) = z and tr(UV ) = w in [27]. Substituting the formula y = z2 −w in
the above equation of X irr(π) yields the equation w2 − w(z2 + 1) + 2z2 − 1 = 0 as
in [27, Theorem 1].

For n = 2, Theorem 1.2 gives the Corollary 1.4.
As a final application, we give a very quick proof of a result from [12, Theorem

2.5, case p = 7].

Proof of Theorem 1.5. By sending x and θ to A and B, respectively, gives the
relation R(A,B) = B−1ABA−1B−1ABA−1BAB−1A−1BAB−1 = I2 in SL(2,C).
Hence, AB−1 = (B−1ABA−1B−1A)B−1(B−1ABA−1B−1A)−1, that is, AB−1 is
conjugate to B−1. So we obtain c = b(a−1). The relationR(A,B) = I2 is equivalent
to B−1ABA−1BAB−1 = AB−1A−1B2A−1B−1A which has palindrome words on
both sides. Starting from A−1 = a − A− (hence q(1)0 = a, q(1)1 = −1 and q

(1)
2 = 0)
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and applying Lemma 4.3 three times, we get

B−1ABA−1BAB−1 = q
(7)
0 I2 + q

(7)
1 A− + q

(7)
2 B−,

where 

q
(7)
0 = −16b4 + 8ab2 − 16a2b2 + 4a3 + 8b2 − 3a+ 16ab4,

q
(7)
1 = 8ab2 − 4a2 − 4b2 + 1,

q
(7)
2 = 16b3 − 4ab− 16ab3 + 8a2b− 4b.

Starting from B2 = (b+B−)2 = 2b2 − 1+2bB− (hence q(2)0 = 2b2 − 1, q(2)1 = 0 and
q
(2)
2 = 2b) and applying Lemma 4.3 three times, we get

AB−1A−1B2A−1B−1A = q
(8)
0 I2 + q

(8)
1 A− + q

(8)
2 B−,

where 


q
(8)
0 = 24a2b2 + 8a4 − 8a2 − 48ab4 + 16b4 − 8b2 − 32a3b2 + 16ab2

+ 32a2b4 + 1,

q
(8)
1 = 16ab2 + 8a3 − 4a+ 12b2 + 32ab4 − 32a2b2 − 32b4,

q
(8)
2 = −16ab3 + 8a2b+ 16b3 − 4b− 4ab.

Thus, q(7)2 = q
(8)
2 is an identity, q(8)0 − q

(7)
0 = (a − 1)(−q(7)1 + q

(8)
1 ), and q

(7)
1 = q

(8)
1

gives the equation 8ab2 + 4a2 + 16b2 + 8a3 − 4a + 32ab4 − 32a2b2 − 32b4 −
1 = 0, which becomes the equation from the statement by setting 2a = y

and 2b = z.

Remark. Using a variable substitution of θ = u and x = v−1u in the palindrome
u(7/3), one obtains the word R(u, v) = ρuρ−1v−1, where ρ = uvu−1v−1uv, which
was considered in [12]. The correspondences x → A, θ → B, u → U and v → V

in SL(2,C) imply tr(B) = tr(U) = z and y = tr(A) = tr(V −1U) = z2 − w, since
tr(U) = tr(V ) = z and tr(UV ) = w in [12]. Substituting the formula y = z2 −w in
the above equation ofX irr(π) yields the polynomial w3−w2−2w+1−z2(w2−3w+2)
obtained in [12].
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Appendix

As announced in Sec. 1, we write here explicit palindromic presentations for several
rational knots.

α/β palindrome u(α/β)

2n+1
1

θ−n(xθx−1θ)n/2x(θx−1θx)n/2θ−n n even

2n+1
1

θ−n(xθx−1θ)
n−1

2 xθx−1θx(θx−1θx)
n−1

2 θ−n n odd

4n+1
2n+1

(xθ−1x−1θ)nx(θx−1θ−1x)n

4n−1
4n−3

(θ−1xθx−1θxθ−1x−1)n/2x(x−1θ−1xθx−1θxθ−1)n/2 n even

4n−1
4n−3

(θ−1xθx−1θxθ−1x−1)
n−1

2 θ−1xθx−1

θxθ−1(x−1θ−1xθx−1θxθ−1)
n−1

2 n odd

6n+1
3

θ−n(xθx−1θ−1xθx−1θxθ−1x−1θ)n/2x

(θx−1θ−1xθx−1θxθ−1x−1θx)n/2θ−n n even

6n+1
3

θ−n(xθx−1θ−1xθx−1θxθ−1x−1θ)
n−1

2 xθx−1θ−1xθx−1

θxθ−1x−1θx(θx−1θ−1xθx−1θxθ−1x−1θx)
n−1

2 θ−n n odd

6n−1
3

θ−(n−1)(xθ−1x−1θxθx−1θ−1xθx−1θ)n/2θ−1x

θ−1(θx−1θxθ−1x−1θxθx−1θ−1x)n/2θ−(n−1) n even

6n−1
3

θ−(n−1)(xθ−1x−1θxθx−1θ−1xθx−1θ)
n−1

2 xθ−1x−1θx

θx−1θ−1x(θx−1θxθ−1x−1θxθx−1θ−1x)
n−1

2 θ−(n−1) n odd

10n+1
5

θ−n
`
(xθx−1θ−1)2xθx−1θ(xθ−1x−1θ)2

´n/2
x

`
(θx−1θ−1x)2θx−1θx(θ−1x−1θx)2

´n/2
θ−n n even

10n+1
5

θ−n
`
(xθx−1θ−1)2xθx−1θ(xθ−1x−1θ)2

´ n−1
2 (xθx−1θ−1)2xθx−1

θx(θ−1x−1θx)2
`
(θx−1θ−1x)2θx−1θx(θ−1x−1θx)2

´ n−1
2 θ−n n odd

10n−1
5

θ−(n−1)
`
(xθ−1x−1θ)2(xθx−1θ−1)2xθx−1θ

´n/2
θ−1xθ−1

`
θx−1θx(θ−1x−1θx)2(θx−1θ−1x)2

´n/2
θ−(n−1) n even

10n−1
5

θ−(n−1)
`
(xθ−1x−1θ)2(xθx−1θ−1)2xθx−1θ

´ n−1
2 (xθ−1x−1θ)2x

(θx−1θ−1x)2
`
θx−1θx(θ−1x−1θx)2(θx−1θ−1x)2

´ n−1
2 θ−(n−1) n odd

10n−3
5

θ−n(xθx−1θxθ−1x−1θ−1xθx−1θxθx−1θ−1xθ−1x−1θ)n/2θ−1xθx−1

θxθ−1(θx−1θ−1xθ−1x−1θxθx−1θxθ−1x−1θ−1xθx−1θx)n/2θ−n n even

10n−3
5

θ−n(xθx−1θxθ−1x−1θ−1xθx−1θxθx−1θ−1xθ−1x−1θ)
n−1

2 xθx−1θxθ−1x−1

θ−1xθx−1θx(θx−1θ−1xθ−1x−1θxθx−1θxθ−1x−1θ−1xθx−1θx)
n−1

2 θ−n n odd

10n+3
5

θ−(n−1)(xθ−1x−1θ−1xθx−1θxθx−1θ−1xθ−1x−1θxθx−1θ)n/2xθ−1x−1

θ−1x(θx−1θxθx−1θ−1xθ−1x−1θxθx−1θxθ−1x−1θ−1x)n/2θ−(n−1) n even

10n+3
5

θ−(n−1)(xθ−1x−1θ−1xθx−1θxθx−1θ−1xθ−1x−1θxθx−1θ)
n+1

2

θ−1xθ−1x−1θ−1xθx−1θxθ−1x−1θ−1xθ−1

(θx−1θxθx−1θ−1xθ−1x−1θxθx−1θxθ−1x−1θ−1x)
n+1

2 θ−(n−1) n odd
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References

[1] E. Barbieri and F. Spaggiari, On branched coverings of lens spaces, Proc. Edinburgh
Math. Soc. 47 (2004) 271–288.

[2] G. Burde, SU(2)-representation spaces for two–bridge knot groups, Math. Ann. 288
(1990) 103–119.

[3] G. Burde and H. Zieschang, Knots (Walter de Gruyter, Berlin, New York, 1985).
[4] A. Cavicchioli, D. Repovš and F. Spaggiari, Topological properties of cyclically pre-

sented groups, J. Knot Theory Ramifications 12(2) (2003) 243–268.
[5] A. Cavicchioli, B. Ruini and F. Spaggiari, Cyclic branched coverings of 2-bridge

knots, Revista Mat. Univ. Compl. Madrid 12 (1999) 383–416.
[6] R. H. Crowell and R. H. Fox, Introduction to Knot Theory (Springer-Verlag, New

York, Heidelberg, Berlin, 1967).
[7] M. Culler and P. Shalen, Varieties of group representations and splitting of 3-

manifolds, Ann. Math. 117(2) (1983) 109–146.
[8] R. H. Fox, A quick trip through knot theory, in Topology of 3-Manifolds and Related

Topics (Prentice Hall Englewood Cliffs, N.J., 1962), pp. 120–167.
[9] S. Fukuhara, Explicit formulae for two–bridge knot polynomials, J. Austral. Math.

Soc. 78(2) (2005) 149–166.
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