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1. Introduction

A space X is said to be a codimension one manifold factor provided that X ×R is a topological manifold. The Productwith a Line Problem is a long standing unsolved problem which asks whether or not all resolvable generalized manifoldsare codimension one manifold factors [4, 15, 18, 19]. The purpose of this paper is twofold: (1) to introduce a new unifying
∗ E-mail: halverson@math.byu.edu
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general position property, called the piecewise disjoint arc-disk property, and its 1-complex analogue, the piecewise
disjoint arc-disk property*; and (2) demonstrate how the various general position properties known to detect codimensionone manifold factors are related.The piecewise disjoint arc-disk property is a general position property that captures the essence of why spaces arisingfrom certain generalized constructions are codimension one manifold factors. The main result of this paper is the followingtheorem.
Theorem 1.1.
If X is a resolvable generalized n-manifold that satisfies the piecewise disjoint arc-disk property, then X ×R is an(n+1)-manifold.

We actually detail the proof of the theorem in the case that the piecewise disjoint arc-disk property is replaced withthe piecewise disjoint arc-disk property*, a slightly stronger property immediately implying piecewise disjoint arc-diskproperty. But we introduce both properties to more thoroughly delineate the relationships with other general positionproperties.The importance of the piecewise disjoint arc-disk property can be seen from its unifying perspective. In all examples ofcodimension one manifold factors detected by general position properties currently known to the authors, the underlyingnature inherent to the piecewise disjoint arc-disk property has provided the needed utility to demonstrate that adecomposition space of dimension n ≥ 4 is a codimension one manifold factor.In this paper, we will also illustrate how the piecewise disjoint arc-disk property, the piecewise disjoint arc-disk property*,and other general position properties used in the detection of codimension one manifolds factors are related. We willintroduce definitions for (a) a modified version of δ-fractured maps, (b) the δ-fractured maps property with respect tothe modified definition, (c) the closed 0-stitched disks property, and (d) the strong fuzzy ribbons property. We willdemonstrate that in the case of resolvable generalized manifolds: (1) the modified δ-fractured maps property impliesthe disjoint homotopies property, (2) the closed 0-stitched disks property implies the δ-fractured maps property, (3) thepiecewise disjoint arc-disk property is equivalent to the δ-fractured maps property, and (4) the piecewise disjoint arc-disk property* is equivalent to the strong fuzzy ribbons property. We will also note several other implications that haveeither been previously proven or are fairly straightforward.The importance of general position properties in detecting codimension one manifold factors of dimension n ≥ 4 isderived from the role of the disjoint disks property in characterizing manifolds of dimension n ≥ 5 [4, 6, 8, 10]. Generalposition properties that are effective in detecting codimension one manifold factors of dimension n ≥ 4 can be foundin [6, 7, 11–14]. A more general and extensive discussion of various types of general position properties can also befound in a recent study by Banakh and Valov [1].
2. Preliminaries

Throughout this paper, we assume that spaces are finite dimensional. We begin with some basic definitions and notation.A compact subset C of a space X is said to be cell-like if for each neighborhood U of C in X , C can be contracted to apoint in U [17]. A space X is said to be resolvable if there is a manifold M and a proper surjective map f : M → X sothat for each x ∈ X , f−1(x) is cell-like.Finite dimensional resolvable spaces are known to be ANRs (i.e., locally contractible, locally compact, separable metricspaces) [17]. The following theorems illustrate the useful extension properties that ANRs possess, which will be appliedfreely in this paper.
Theorem 2.1 (Homotopy Extension Theorem).
Suppose that f : Y → X is a continuous map where Y is a metric space and X is an ANR, Z is a compact subset of Y
and ε > 0. Then there exists δ > 0 such that each gZ : Z → X which is δ-close to f�Z extends to a map g : Y → X so
that g is ε-homotopic to f. In particular, for any open set U such that Z ⊂ U ⊂ Y , there is a homotopy H : Y ×I → X
so that
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(i) H0 = f and H1 = g;(ii) g�Z = gZ ;(iii) Ht�Y−U = f�Y−U for all t ∈ I; and(iv) diamH(y×I) < ε for all y ∈ Y .

Corollary 2.2 (Map Extension Theorem).
Suppose that f : Y → X is a continuous map where Y is a metric space and X is an ANR, Z is a compact subset of Y
and ε > 0. Then there exists δ > 0 such that each gZ : Z → X which is δ-close to f�Z extends to g : Y → X so that
ρ(f, g) < ε.

A set Z ⊂ X is said to be 0-LCC embedded in X if for every z ∈ Z , each neighborhood U ⊂ X of z contains aneighborhood V ⊂ X of z such that any two points in V − Z are connected by a path in U − Z . A point x ∈ X is saidto be 1-LCC embedded in X if every neighborhood U ⊂ X of x contains a neighborhood V ⊂ X of x such that any map
f : ∂D2 → V − {x} can be extended to a map f : D2 → U − {x}.We say that a homotopy f : Z × [a, b] → X realizes g : Z × [c, d] → X if f(x, t) = g(x, γ(t)) for t ∈ [a, b], where
γ : [a, b]→ [c, d] is the linear map from the interval [a, b] onto the interval [c, d] such that γ(a) = c and γ(b) = d.Suppose fi : Z ×I → X for i = 1, . . . , N, where fi(x, 1) = fi+1(x, 0) for i = 1, . . . , N − 1. We say that the adjunctionof f1, f2, . . . , fN , denoted f = f1 · f2 · . . . · fN , is the homotopy f : Z ×I → X so that f�Z × [(i−1)/N,i/N] realizes fi for i = 1, . . . , N.
3. General position properties

A space X is said to have the (k,m)-DDP provided that any two maps f : Dk → X and g : Dm → X can be ap-proximated arbitrarily closely by maps with disjoint images. The (k,m)-DDP is satisfied by n-manifolds whenever
n ≥ k +m+ 1 [20]. The (1, 1)-DDP is more commonly called the disjoint arcs property (DAP). A resolvable generalizedmanifold of dimension n ≥ 3 has the DAP [6, Proposition 26.3], but no other general position properties for k +m ≥ 2need be satisfied. Even the (0, 2)-DDP fails to hold in the famous Daverman–Walsh ghastly spaces, which are resolv-able generalized manifolds of dimension n ≥ 3 that contain no embedded 2-cells. In these spaces every singular disknecessarily contains an open set [9].Several techniques have by now been developed for detecting codimension one manifold factors of dimension n ≥ 4.In particular, a resolvable generalized manifold X of dimension n ≥ 4 is known to be a codimension one manifoldfactor in the case it has one of the following general position properties: the disjoint arc-disk property [5], the disjointhomotopies property [11], or the disjoint topographies (or disjoint concordance) property [7, 14]. The disjoint arc-diskproperty, satisfied by manifolds of dimension n ≥ 4, is the most natural first guess as a general position property todetect codimension one manifold factors. However, although sufficient, it is not necessary (for examples, see [3, 9, 11]).On the other hand, the disjoint topographies (or disjoint concordance) property is a necessary and sufficient conditionfor resolvable spaces of dimension n ≥ 4 to be codimension one manifold factors [7, 14]. It is still unknown whether ornot the disjoint homotopies property likewise provides such a characterization.There are also several related general position properties that fall into subclasses of these properties. For example,spaces that have the plentiful 2-manifolds property [11], the 0-stitched disks properties [13], or for which the methodof δ-fractured maps can be applied [12], all have the disjoint homotopies property. The crinkled ribbons property, thetwisted crinkled ribbons property, and the fuzzy ribbons property all imply the disjoint topographies property [14].We now further detail each property with related properties and relevant results.
3.1. The disjoint arc-disk property

Let I denote the unit interval and D2 denote a disk.
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Definition 3.1.A space X is said to have the disjoint arc-disk property (DADP) provided that any two maps α : I → X and f : D2 → Xcan be approximated arbitrarily closely by maps with disjoint images.
Theorem 3.2 ([5]).
Every resolvable generalized manifold having DADP is a codimension one manifold factor.

3.2. The disjoint homotopies property and related properties

Let both D and I denote the unit interval [0, 1].
Definition 3.3.A space X has the disjoint homotopies property (DHP) if any two path homotopies f, g : D×I → X can be approximatedarbitrarily closely by homotopies f ′, g′ : D×I → X so that f ′t(D) ∩ g′t(D) = ∅ for all t ∈ I.
Theorem 3.4 ([11]).
Every resolvable generalized n-manifold having DHP is a codimension one manifold factor.

Definition 3.5.A space X has the plentiful 2-manifolds property (P2MP) if each path α : I → X can be approximated arbitrarily closelyby a path α ′ : I → N ⊂ X where N is a 2-manifold embedded in X .
Theorem 3.6 ([11]).
Every resolvable generalized n-manifold, n ≥ 4, having P2MP, satisfies DHP, and hence is a codimension one manifold
factor.

Definition 3.7.A map f : D×I → X is said to be δ-fractured over a map g : D×I → X if there are pairwise disjoint balls B1, B2, . . . , Bmin D×I such that for each i ∈ {1, . . . , m}:(i) diamBi < δ;(ii) f−1(img) ⊂ ⋃m
i=1 intBi; and(iii) diamg−1(f(Bi)) < δ.

Theorem 3.8 ([12]).
If X is a resolvable generalized n-manifold, n ≥ 4, with the property that for an arbitrary homotopy f : D×I → X,
constant homotopy g : D×I → X, and δ > 0, there are approximations f ′ of f and g′ of g such that f ′ is δ-fractured
over g′, then X has DHP, and hence X is a codimension one manifold factor.

In fact, upon closer inspection only a weaker modified version of the δ-fractured maps property is required to detectcodimension one manifold factors, which we will now define and prove here.
Definition 3.9 (modified Definition 3.7).A map f : D×I → X is said to be δ-fractured over a map g : D×I → X if there are pairwise disjoint balls B1, B2, . . . , Bmin D×I such that:(i) diamBi < δ;(ii) f−1(img) ⊂ ⋃m

i=1 intBi; and(iii) p◦g−1◦f(Bi) 6= I;
where p : D×I → I is the natural projection map.
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Definition 3.10.A space X is said to have the δ-fractured maps property (δ-FMP) provided that for any path homotopy f : D×I → X ,constant homotopy g : D×I → X , and δ > 0, there are approximations f ′ of f and g′ of g so that f is δ-fractured(modified version) over g.
Theorem 3.11.
Every ANR having δ-FMP satisfies DHP.

Proof. Let X be an ANR with δ-FMP. Note that X has DAP (this can be simply verified by applying δ-FMP to twoconstant path homotopies).Let f, g : D×I → X where g is a constant homotopy. Applying DAP, we may assume, without loss of gener-ality, that f(D×Q∗) ∩ g(D×Q∗) = ∅, where Q∗ = Q ∩ I. Let ε > 0. Choose N sufficiently large so thatdiam(f({x}× [(i− 1)/2N, i/2N ])) < ε/4 and diam(g({x}× [(i− 1)/2N, i/2N ])) < ε/4 for all x ∈ D and i = 1, . . . , 2N .Define
fi = f�D×[(i−1)/2N ,i/2N ], gi = g�D×[(i−1)/2N ,i/2N ],

λi, γi : D×I → X are constant homotopies λi(x, t) = fi/2N (x) and γi(x, t) = g(i−1)/2N (x).
Note that the adjunction maps f̃ = f1 · γ1 · . . . · f2N · γ2N and g̃ = λ1 ·g1 · . . . · λ2N ·g2N are (ε/4)-approximations of f and g,respectively.Choose ξ so that 0 < ξ < ε/4 and 2ξ < dist(fi/2N (D), gi/2N (D)) for all i = 0, . . . , 2N . Then 2ξ < dist((fi)e(D), (γi)e(D))and 2ξ < dist((λi)e(D), (gi)e(D)) for e = 0, 1 and all i = 1, . . . , 2N . Choose ζ > 0 so that ζ-approximations of fi/2N or
gi/2N are ξ-homotopic to fi/2N or gi/2N , respectively. Note that necessarily ξ < ε/4.Let f ′i and γ′i be ζ-approximations of fi and γi, respectively, so that f ′i is δ-fractured (modified version) over γ′i , where
δ > 0 is sufficiently small so that if B′1, B′2, . . . , B′m ⊂ D×I are the balls in the domain of f ′i , promised by the δ-fracturedmaps condition, then diam fi(B′j ) < ε/2. Let p : D×I → I be the natural projection map. Let ψi : D×I → D×I bea homeomorphism taking each ball B′j to a ball Bj to such that p(Bj ) ∩ p(Bk ) = ∅ if j 6= k and f ′′i = f ′i ◦ψi is an(ε/2)-approximation of f ′i . The map ψi can be defined by its inverse ψ−1

i . The map ψ−1
i is obtained by selecting apoint (xj , tj ) ∈ intB′j for each j = 1, . . . , m so that tj 6= tk if j 6= k and a small ball neighborhood Uj of B′j so that thediam f ′i (Uj ) < ε/2 and Uj ∩ Uk = ∅ if j 6= k . The ball B′j is compressed within Uj to a very tiny ball neighborhood Bjof (xj , tj ), so that p(Bj ) ∩ p(Bk ) = ∅ if j 6= k . Note that f ′′i is δ-fractured over γ′i with respect to the balls B1, B2, . . . , Bm.Now we demonstrate for a fixed i how to reparameterize λ′i to obtain approximation λ′′i such that f ′′i and λ′′i are disjointhomotopies, as follows: Given B1, B2, . . . , Bm to be the balls in the domain of f ′′i obtained above, such that ψi(Bj ) = B′jand p(Bj ) ∩ p(Bk ) = ∅ if j 6= k , partition I into a collection of subintervals with nonempty interiors, J = {J1, J2, . . . , Jr},so that

• J1 ≤ J2 ≤ . . . ≤ Jr ,• J1 and Jr do not contain any of the projection sets p(Bj ),• for j = 1, . . . , m, p(Bj ) ⊂ int J for some J ∈ J,
• if p(Bj ) ⊂ J ∈ J, then p(Bk ) * J when j 6= k , and
• if j 6= k , there is at least one interval J between the intervals containing p(Bj ) and p(Bk ) such that J contains noprojection set p(Bl).

For each Jk ∈ J, we define a parameter value τk as follows: Let τ0 = 0 and τr = 1. For 0 < k < r, if Jk or Jk+1 contains
p(Bj ) then let τk be a value tj where f ′′i (Bj ) ∩ γ′i (D×{tj}) = ∅. Such a value is guaranteed because f ′′ is δ-fracturedover γ′. Otherwise let τk = 0.We now define the homotopy γ′′i such that γ′′i �D×Jk realizes γ′i�D×[τk−1 ,τk ]. The resulting maps f ′′i and γ′′i are disjointhomotopies. Note that diam γ′i ({x}×I) < ε/2 since γ′i is an (ε/4)-approximation of a constant homotopy. Thus γ′′ is
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an (ε/2)-approximation of γ′. For e = 0, 1, note that (f ′i )e = (f ′′i )e and (γ′i)e = (γ′′i )e. By choice of ζ, fi, γi, and ourapproximations of fi and γi, (f ′′i )e is ξ-homotopic to (fi)e and (γ′′i )e is ξ-homotopic to (γi)e. Note that these ξ-homotopiesnecessarily have disjoint images by virtue of our choice of ξ . By adjoining these ξ-homotopies to the ends of f ′′i and γ′′iand reparameterizing appropriately, adjusting the parameter values only very near the ends of the original homotopies
f ′′i and γ′′i to cover the adjoined homotopies, we may assume without loss of generality that (f ′′i )e = (fi)e and (γ′′i )e = (γi)e,still maintaining that f ′′i and γ′′i are (ε/2)-approximations of f ′i and γ′i , respectively, and insuring that f ′′i and γ′′i aredisjoint homotopies.Observe that final adjusted maps f ′′i and γ′′i are disjoint homotopies that are (3ε/4)-approximations of fi and γi, re-spectively. We likewise obtain g′′i and λ′′i that are disjoint homotopies and (3ε/4)-approximation of gi and λi, re-spectively. Now we form the adjunction f ′ = f ′′1 · λ′′1 · f ′′2 · λ′′2 · . . . · f ′′2N · λ′′2N and g′′ = γ′′1 ·g′′1 · γ′′2 ·g′′2 · . . . · γ′′2N ·g′′2N , whichare (3ε/4)-approximations of f̃ and g̃, respectively. Therefore f ′ and g′ are the desired ε-approximations of f and g,respectively, that are disjoint homotopies.
Remark 3.12.Note that in the proof above, there is no need for the δ-control omitted by the modified version of the definition of
δ-fractured maps in the reparamaterization of γ′i to obtain γ′′i , as size controls are maintained by virtue of the homotopiesbeing thin.
Corollary 3.13 (modified version of Theorem 3.8).
Every resolvable generalized manifold having δ-FMP satisfies DHP, and therefore is a codimension one manifold factor.

The maps of f, g : D2 → X are said to be 0-stitched provided that there are 0-dimensional Fσ -sets A and B containedin the interior of D2 such that f (D2−A) ∩ g(D2−B) = ∅. We say that f and g are 0-stitched along A and B. If Y and
Z are sets in D2 missing A and B respectively, then we say that f and g are 0-stitched away from Y and Z . An infinite1-skeleton of D2, denoted (K∞)(1), is defined by (K∞)(1) = ⋃K (1)

i , where {Ki} is a sequence of triangulations of D2 suchthat K1 < K2 < . . . and mesh(Ki)→ 0.
Definition 3.14.A space X has the 0-stitched disks property if any two maps f, g : D2 → X can be approximated arbitrarily closely bymaps f ′, g′ : D2 → X such that f ′ and g′ are 0-stitched along 0-dimensional Fσ -sets A and B and away from infinite1-skeletons (K∞j )(1), j = 1, 2, of D2 such that f ′�(K∞1 )(1) ∪ g′�(K∞2 )(1) is 1-1.
Theorem 3.15 ([13]).
Every resolvable generalized manifold having the 0-stitched disks property satisfies DHP, and hence is a codimension
one manifold factor.

For the purposes of this paper, we define the following
Definition 3.16.A space X has the closed 0-stitched disks property if it has the 0-stitched disks property where “Fσ -sets A and B” isreplaced with “closed sets A and B” in Definition 3.14.
Clearly, if a space has the closed 0-stitched disks property, then it has the 0-stitched disks property. Thus the followingis an immediate corollary to Theorem 3.15.
Corollary 3.17.
Every resolvable generalized manifold having the closed 0-stitched disks property satisfies DHP, and hence is a codi-
mension one manifold factor.
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3.3. The disjoint topographies property and related properties

A characterization of codimension one manifold factors can be stated in terms of path concordances. A path concordancein a space X is a map F : D×I → X×I such that F (D×e) ⊂ X×e, e ∈ {0, 1}. Let projX : X ×I → X denote thenatural projection map.
Definition 3.18.A metric space (X, ρ) satisfies the Disjoint Path Concordances Property (DCP) if, for any two path homotopies
fi : D×I → X , i = 1, 2, and any ε > 0, there exist path concordances Fi : D×I → X×I such that

F1(D×I) ∩ F2(D×I) = ∅
and ρ(fi, projX ◦Fi) < ε.
Theorem 3.19 ([7]).
A resolvable generalized manifold is a codimension one manifold factor if and only if it has DCP.

An equivalent characterization of codimension one manifold factors, motivated by viewing the disjoint path concordancesproperty with respect to the projections of the concordances to the parameter space I, can be formulated in the realm oftopographies. A topography Υ on Z is a partition of Z induced by a map τ : Z → I. The t-level of Υ is given by
Υt = τ−1(t).

A topographical map pair is an ordered pair of maps (f, τ) such that f : Z → X and τ : Z → I. The topography associatedwith (f, τ) is Υ, where Υt = τ−1(t). Suppose that for i = 1, 2, Υi is a topography on Z induced by τi and fi : Z → X .Then (f1, τ1) and (f2, τ2) are disjoint topographical map pairs provided that for all t ∈ I,
f1(Υ1

t ) ∩ f2(Υ2
t ) = ∅.

Definition 3.20.A space X has the disjoint topographies property (DTP) if any two topographical map pairs (fi, τi), i = 1, 2, where
fi : D2 → X , can be approximated arbitrarily closely by disjoint topographical map pairs.
Theorem 3.21 ([14]).
Every resolvable generalized manifold is a codimension one manifold factor if and only if it has DTP.

Although a powerful tool, providing an actual characterization of codimension one manifold factors, the disjoint topogra-phies property (and the disjoint path concordances property) is generally accessed through other weaker forms of generalposition properties.
Definition 3.22.A generalized n-manifold X has the crinkled ribbons property (CRP) provided that any constant homotopy f : K ×I → X ,where K is a 1-complex can be approximated arbitrarily closely by a map f ′ : K ×I → X so that

• f ′(K ×{0}) ∩ f ′(K ×{1}) = ∅; and
• dim f ′(K ×I) ≤ n − 2.

Theorem 3.23 ([14]).
Every resolvable generalized n-manifold, n ≥ 4, with the crinkled ribbons property has DTP, and is therefore a codi-
mension one manifold factor.
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Definition 3.24.A generalized n-manifold X has the twisted crinkled ribbons property (CRP-T) provided that any constant homotopy
f : D×I → X can be approximated arbitrarily closely by a map f ′ : D×I → X so that

• f ′(D×{0}) ∩ f ′(D×{1}) is a finite set of points; and
• dim f ′(D×I) ≤ n − 2.

Theorem 3.25 ([14]).
Every resolvable generalized n-manifold of dimension n ≥ 4 having the twisted crinkled ribbons property and the
property that points are 1-LCC embedded in X has DTP, and is therefore a codimension one manifold factor.

Remark 3.26.In both Definitions 3.22 and 3.24, the condition dim (im f ′) ≤ n − 2 may be replaced with
• im f ′ is 0-LCC in X with empty interior.

This follows from a result by Borel [2, Proposition 4.9] stating that if X is a cohomological n-manifold and Z is a closedsubset of X , then dimZ ≤ n − 2 if and only if Z has empty interior and is 0-LCC embedded in X .
A topographical map pair (f, τ) is said to be in the K category if for some 1-complex K , K ×I is the domain of f and τ,and f : K ×I → X so that K ×{e} ⊂ τ−1(e) for e = 0, 1. In this case, we shall denote (f, τ) ∈ K. A topographical mappair (f, τ) ∈ K is said to be in the Kc category if f : K ×I → X is a constant homotopy on K and τ : K ×I → I suchthat τ(x, t) = t.
Definition 3.27.Let (fi, τi) ∈ K be such that fi : Ki×I → X and τi : Ki×I → I. Then (f1, τ1) is said to be fractured over a topographicalmap pair (f2, τ2) if there are disjoint balls B1, B2, . . . , Bm in K1×I such that

• f−11 (im f2) ⊂ ⋃m
j=1 intBj ; and

• τ2◦f−12 ◦f1(Bi) 6= I.
Definition 3.28.A space X is said to have the fuzzy ribbons property (FRP) provided that for any topographical map pairs, (f1, τ1) ∈ Kand (f2, τ2) ∈ Kc , and ε > 0 there are topographical map pairs (f ′i , τ ′i) ∈ K, for i = 1, 2, such that f ′i is an ε-approximationof fi and (f ′1, τ ′1) is fractured over (f ′2, τ ′2).
Theorem 3.29 ([14]).
Every resolvable generalized manifold having FRP has DTP, and is therefore is a codimension one manifold factor.

Definition 3.30.A space X is said to have the strong fuzzy ribbons property (FRP*) provided that it satisfies the conditions of FRP inDefinition 3.28, where τ ′2 : K2×I → I is specified to be the natural projection map, i.e., τ ′2(x, t) = t.
Clearly, a space with FRP* also has FRP. Thus we have the following corollary to Theorem 3.29.
Theorem 3.31.
Every resolvable generalized manifold having FRP* has DTP, and is therefore is a codimension one manifold factor.
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4. The piecewise disjoint arc-disk property

In this section we introduce the piecewise disjoint arc-disk property and the piecewise disjoint arc-disk property*. Weprove the main results associated with these properties.
Definition 4.1.A space X is said to have the piecewise disjoint arc-disk property (P-DADP) if for every f : D2 → X , α : I → X , and
ε > 0 there is a cell complex T of D2 and approximations f ′ : D2 → X and α ′ : I → X − f ′(T (1)) so that for each σ ∈ T 2,there is an ε-homotopy Hσ : I × [0, 1]→ X − f ′(T (1)) from α ′ to a map α ′′ : I → X − f ′(σ ).
Definition 4.2.A space X is said to have the piecewise disjoint arc-disk property* (P-DADP*) if for every f : D2 → X , α : L → X where
L is a 1-complex, and ε > 0 there is a cell complex T of D2 and approximations f ′ : D2 → X and α ′ : L → X − f ′(T (1))so that for each σ ∈ T 2, there is an ε-homotopy Hσ : L× [0, 1]→ X − f ′(T (1)) from α ′ to a map α ′′ : L → X − f ′(σ ).
Notice that P-DADP (and P-DADP*) does not necessarily imply DADP. The image of α ′′ may still necessarily intersect
f ′(T −σ ). Another important note is that the requirement that the homotopy pushing α ′ off of f ′(σ ) misses f ′(∂σ ) ⊂ f ′(T (1))necessarily requires dimension n ≥ 4. Obviously, this is not a property satisfied in a 3-manifold.One may wonder if this property is too much to hope for in a space that does not have DADP. However, P-DADP issatisfied in every example presently known to the authors of a codimension one manifold factor of dimension n ≥ 4detected by general position properties. This is because P-DADP is implied by other general position propertiessatisfied by these spaces.
4.1. P-DADP variations

We begin with some preliminary results establishing connections between P-DADP, P-DADP*, and variations of theseproperties.
Lemma 4.3.
Let X be a path connected ANR that has P-DADP. Then X satisfies the following: For every f : D2 → X, αi : I → X,
where i = 1, . . . , m, and ε > 0 there is a cell complex T of D2 and approximations f ′ : D2 → X and α ′i : I → X−f ′(T (1)) so
that for each σ ∈ T 2, there is an ε-homotopy Hi

σ : I × [0, 1]→ X −f ′(T (1)) from α ′i to a map α ′′i : L → X −f ′(σ ). Moreover,
if there are closed sets Ai ⊂ I such that α ′i (Ai) ∩ f ′(σ ) = ∅, then we may require Hi

σ�Ai×I to be a constant homotopy.

Proof. Divide I into 2m− 1 intervals. Find arcs γi from αi(1) to αi+1(0) for i = 1, . . . , m− 1. Now define a single arc
β : I → X that is the adjunction of all of these arcs α1 · γ1 ·α2 · . . . ·αn−1 · γn−1 ·αn such that

β(t) =

αi
((2m− 1)t − (2i− 2)) if t ∈

[ 2i − 22m− 1 , 2i − 12m− 1
]
,

γi
((2m− 1)t − (2i− 1)) if t ∈

[ 2i − 12m− 1 , 2i2m− 1
]
.

Now apply P-DADP to f and β. The desired maps for the arcs αi are obtained be restricting the maps associated with βto the proper subintervals.The moreover part of the lemma follows from an application of the map extension property for ANRs.
Theorem 4.4.
Let X be a path connected ANR that has P-DADP and (0, 2)-DDP. Then X has also P-DADP*.
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Proof. Suppose X is a path connected ANR that has P-DADP and (0, 2)-DDP. Let f : D2 → X , α : L → X , where
L is a 1-complex, and ε > 0. By (0, 2)-DDP we may assume without loss of generality that α(L(0)) ∩ f(D2) = ∅. Let
ξ < min{ε, dist(α(L(0)), f(D2))/2}. Let {κ1, . . . , κm} denote the 1-simplices of L. Let αi : κi → X . Let ζ > 0 be such thatany ζ-approximation of αi is ξ-homotopic to αi, for any i = 1, . . . , m.By Lemma 4.3, there is a cell complex T of D2 and ζ-approximations f ′ : D2 → X and α ′i : κi → X − f ′(T (1)), such thatfor each σ ∈ T 2, there are ε-homotopies Hi

σ : κi× [0, 1]→ X − f ′(T (1)) of α ′i to a map α ′′i : κi → X − f ′(σ ). By our choiceof ζ, there is a ξ-homotopy Gi : κi× [0, 1] → X from αi to α ′i . By our choice of ξ , Gi(∂κi× [0, 1]) ∩ f ′(D2) = ∅. Let Ai bea closed neighborhood of ∂κi in κi such that Gi(Ai× [0, 1]) ∩ f ′(D2) = ∅. Now apply the moreover part of Lemma 4.3 torequire that Hi
σ is a constant homotopy on Ai.Now we define new maps α̃ ′i : κi → X such that α̃ ′i�∂κi = αi�∂κi and homotopies H̃i

σ : κi×I → X − f ′(T (1)) taking α̃ ′ to
α̃ ′′ : κi → X − f ′(σ ) as follows: Recall that we have required that (Hi

σ )t(x) = α ′i (x) for all x ∈ Ai and t ∈ [0, 1]. Let Gi bethe reverse of Gi, taking α ′i back to αi, so that (Gi)t = (Gi)1−t . Taper Gi to get a ξ-homotopy G∗i that is the constantmap α ′i on κi − intAi, and ends at αi on ∂κi. Let α̃ ′i = (G∗i )1. Note that α̃ ′i (Ai)∩ f ′(D2) = ∅ and α̃ ′i : κi → X − f ′(T (1)). Let
H̃i
σ : κi× [0, 1]→ X − f ′(T (1)) be the homotopy such that

H̃i
σ (x, t) = {α̃ ′i (x) if x ∈ Ai,

Hi
σ (x, t) otherwise.

Note that α̃ ′′i = (H̃i
σ )1 : κi → X − f ′(σ ). Let α ′ = ⋃ α̃ ′i and Hσ = ⋃ H̃i

σ . Then for each σ ∈ T (2), Hσ : L×I → X − f ′(T (1))is an ε-homotopy from α ′ : L → X − f ′(T (1)) to α ′′ = ⋃ α̃ ′′i : L → X − f ′(D2). Therefore, the cell complex T and the maps
α ′, f ′ and Hσ are the desired maps to demonstrate that X has DADP*.
The following lemma provides a generalization of P-DADP* that will be needed in the proof of one of the key theorems.
Lemma 4.5.
An ANR X has P-DADP* if and only if it has the following property:(†) For every ε > 0 and f : K ×I → X and α : L → X, where K and L are 1-complexes, there exist a cell complex T of

K ×I and approximations f ′ of f and α ′ : L → X − f ′(T (1)) of α such that for each σ ∈ T (2), there is an ε-homotopy
Hσ : L× [0, 1]→ X − f ′(T (1)) from α ′ to a map α ′′ : L → X − f ′(σ ).

Moreover, if there is a closed set A ⊂ L such that α ′(A) ∩ f ′(σ ) = ∅, then we may require Hσ�A×I to be a constant
homotopy.

Proof. It suffices to show the forward direction because the reverse direction is trivial.Suppose that X has P-DADP*. Let ε > 0 and f : K ×I → X , α : L → X , where K and L are 1-complexes. Let
{κ1, κ2, . . . , κm} be the collection of 1-simplices of K . We will define the desired cell complex T and maps f ′ and α ′inductively for i = 1, . . . , m. By P-DADP* and the map extension properties of ANRs, there is a cell complex T1 of κ1×Iand approximations f ′1 of f and α ′1 : L → X − f ′1(T (1)1 ) of α so that the conclusion of property (†) holds with respect to T1,
f ′1�κ1×I , and α ′1. Note that any sufficiently close approximation of f ′1 and α ′1 also satisfies the same conditions.Fix i where 1 ≤ i < m. Suppose that Tj for 1 ≤ j ≤ i, f ′i , and α ′i : L → X − f ′i

(
T (1)1 ∪ · · · ∪ T (1)

i
) have been defined so thatthe conclusion of property (†) holds with respect to T1∪· · ·∪Ti, f ′i�(⋃ij=1 κj )×I , and α ′i . By P-DADP* and the map extensionproperties of ANRs, there is a cell complex Ti+1 of κi+1×I and approximations of f ′i+1 of f ′i and α ′i+1 : L → X − f ′i+1(T (1)

i+1)of α ′i so that the conclusion of property (†) holds with respect to Ti+1, f ′i+1�κi+1×I and α ′i+1. Moreover, we require theapproximations to be sufficiently close that it is also the case that α ′i+1 : L → X − f ′i+1(T (1)1 ∪ · · · ∪ T (1)
i
) and property(†) holds with respect to T1 ∪ · · · ∪ Ti, f ′i+1�(⋃ij=1 κj )×I and α ′i+1. Then property (†) holds with respect to T1 ∪ · · · ∪ Ti+1,

f ′i+1�(⋃i+1
j=1 κj )×I and α ′i+1. Let T = T1 ∪ · · · ∪ Tm, f ′ = f ′m and α ′ = α ′m. Then T is the desired cell complex and f ′ and α ′are the desired maps to conclude our proof in this direction.The moreover part of the lemma follows from an application of the map extension property for ANRs.
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4.2. The proof of the main theorem

We now aim to prove the main theorem and a 1-complex analogue of the main theorem. The 1-complex analogue willfollow as a corollary of the following
Theorem 4.6.
Suppose that X is an ANR. Then X satisfies P-DADP* if and only if X satisfies FRP*.

Proof. First we prove the forward direction. Suppose that X satisfies P-DADP*. Let (f1, τ1) ∈ K, (f2, τ2) ∈ Kc , and
ε > 0, where fi : Ki×I → X . Let α = f2�K2×{0}. Apply P-DADP* and Lemma 4.5 to obtain the promised cell complex Tof K1×I and approximations f ′1 : K1×I → X of f1 and α ′ : K2 → X−f (T (1)) of α satisfying the condition of property (†) inLemma 4.5. Let {σ1, . . . , σm} denote the collection of all 2-cells in T . For each j = 1, . . . , m, let Hσj : K2×I → X−f ′1(T (1))be the promised homotopy that pushes α ′ to α ′′j : K2 → X − f ′1(σj ) and H−σj be the reverse of Hσ that pushes α ′′ backto α ′. Let f ′2 = Hσ1 ·H−σ1 ·Hσ2 ·H−σ2 · . . . ·Hσm ·H−σm . Note that f ′2 : K2×I → X − f1(T (1)). Let τ ′i : Ki×I → I be the naturalprojection map.We claim that (f ′1, τ ′1) is fractured over (f ′2, τ ′2). Since f ′1(T (1)) ∩ f ′2(K2×I) = ∅, it follows that f ′1(∂σj ) ∩ f ′2(K2×I) = ∅for each σj ∈ T (2). Thus there is a ball Bj in the interior of each σj ∈ T (2) such that σj ∩ (f ′1)(−1)(im f ′2) ⊂ Bj . Hence(f ′1)−1(im f ′2) ⊂ ⋃m

j=1 intBj . This is the first condition that must be satisfied. Also note that (f ′2)(2j−1)/(2m) = α ′′j and
f ′1(σj ) ∩ α ′′j (K2) = ∅. Hence f ′1(Bj ) ∩ (f ′2)(2j−1)/(2m)(K2) = ∅. Thus τ ′2 ◦ (f ′2)−1 ◦f ′1(Bj ) ⊂ I − {(2j − 1)/(2m)} which means
τ ′2 ◦ (f ′2)−1 ◦f ′1(Bj ) 6= I. This is the second condition that must be satisfied. Hence (f ′1, τ ′1) is fractured over (f ′2, τ ′2).Therefore X satisfies FRP*.To prove the reverse direction, suppose that X satisfies FRP*. Let f : D2 → X and α : L → X . Let f1 : D×I → X be themap f , where D2 = D×I and f2 : L×I → X be the constant homotopy on α . Let (fi, τi) be the topographical map pairon the homotopy fi such that τi : κi×I → I is the natural projection map. By FRP* there are topographical map pairs(f ′i , τ ′i) ∈ K such that f ′i is an ε-approximation of fi, (f ′1, τ ′1) is fractured over (f ′2, τ ′2), where τ ′2 is the natural projectionmap. This means that there are disjoint balls B1, B2, . . . , Bm in D×I such that(i) (f ′1)−1(im f ′2) ⊂ ⋃m

j=1 intBj , and
(ii) τ ′2 ◦ (f ′2)−1 ◦f ′1(Bj ) 6= I.

Without loss of generality we may assume that the balls B1, B2, . . . , Bm are subpolyhedra of D×I. Define a cell complex
T from a partition of D×I into a collection of 2-cells so that {B1, B2, . . . , Bm} ⊂ T (2). Let f ′ = f ′1 and α ′ = (f ′2)0. Notethat since f ′1(T (1))∩ im f ′2 = ∅, it follows from condition (i) that f ′(T (1))∩α ′(L) = ∅. Thus we get both α ′ : L → X − f ′(T (1))and f ′2 : L×I → X −f ′(T (1)). Let σ ∈ T (2). If σ /∈ {B1, B2, . . . , Bm}, let Hσ : L×I → X −f ′(T (1)) be the constant homotopyon α ′. Then α ′′ = (Hσ )1 = α ′ : L×I → X − f ′(σ ). If σ ∈ {B1, B2, . . . , Bm}, then let j be the index such that σ = Bj .Choose tj so that τ1 ◦f−11 ◦f2(Bj ) misses tj . Let Hσ : L×I → X − f ′(T (1)) be the homotopy that realizes f ′2�L×[0,tj ]. Then
Hσ pushes α ′ to α ′′ = (Hσ )tj : L → X − f ′(σ ).Therefore T is the desired cell complex and f ′ and α ′, together with the homotopies Hσ , are the desired maps whichshow that X has P-DADP*.
We can now derive the 1-complex analogue of the main result as a corollary to Corollary 3.31 and Theorem 4.6.
Corollary 4.7.
If X is a resolvable generalized n-manifold that satisfies P-DADP*, then X ×R is an (n+1)-manifold.

Theorem 4.8.
Suppose X is an ANR. Then X satisfies δ-FMP if and only if X satisfies P-DADP.

Proof. The proof is exactly as that above, with I playing the role of the 1-complex L, except that the extra δ-controlneeded for the forward direction is obtained by choosing T with small mesh.
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We now note that the main result (Theorem 1.1) follows as a corollary to Corollary 3.13 and Theorem 4.8.
Theorem 1.1.
If X is a resolvable generalized n-manifold that satisfies P-DADP, then X ×R is an (n+1)-manifold.

5. Further relationships

In this section we demonstrate further relationships of the P-DADP and P-DADP* properties with other properties, aswell as relationships amongst other properties that have not been previously addressed.
Theorem 5.1.
Every resolvable generalized manifold of dimension n ≥ 4 with P2MP has also P-DADP.

Proof. Let X be an ANR of dimension n ≥ 4 with the plentiful 2-manifolds property. Let α : I → X and f : D2 → X .Let α ′ : I → N ⊂ X be an approximation of α where N is a 2-manifold containing the image of α ′ in its interior. ByLemma 5.2, for which we will provide the proof below, we may assume without loss generality that α ′ is embedded in N.Since any embedded arc in a 2-manifold is tame, the image of α ′ can be collared in N thereby providing an ε-isotopy
g : I ×I → N so that g0 = α ′ and g0(I) ∩ g1(I) = ∅.Since dimN = 2, it follows that N is 0-LCC embedded in X [6, Corollary 26.2A]. Thus we may approximate f by
f ′ : D2 → X so that f ′(Q∗×Q∗) ∩ N = ∅, where the Q∗ = Q ∩ I. Let T be the cell complex of D2 so that

T (2) = {[
i − 12m , i2m

]
×
[
j − 12m , j2m

] : 1 ≤ i, j ≤ 2m},
where m is sufficiently large so that if σ ∈ T (2), then diam f ′(σ ) < δ = dist(g0(I), g1(I)). Hence for each σ ∈ T (2), theimage f ′(σ ) can meet only one of g0(I) or g1(I). If f ′(σ ) misses g0(I), then let Hσ be the constant homotopy on α ′ = g0.If f ′(σ ) meets g0(I), then let Hσ be the realization of g.The cell complex T and the maps f ′ and α ′ together with the homotopies Hσ demonstrate that X has P-DADP.
Lemma 5.2.
If X is a resolvable generalized manifold with DAP and P2MP and α : I → X, then α can be approximated arbitrarily
closely by an embedding α ′ : I → intN ⊂ N ⊂ X, where N is a 2-manifold.

Proof. Since X has DAP, we may assume without loss of generality that α is an embedding in X . Let ε > 0 be given.By the continuity of α , there is a δ > 0 such that whenever A ⊂ I and diamA < δ, we have diam α(A) < ε/3. By thecontinuity of α−1, there is γ such that 0 < γ < ε/3 and whenever Z ⊂ X and diamZ < 2γ, we have diam α−1(A) < δ. Let
α ′ be a γ-approximation of α such that α ′ : I → intN ⊂ N ⊂ X , which is promised by P2MP. Without loss of generalitywe may assume that α ′ is a piecewise linear map in general position in N. Hence any self intersection points comein pairs. Let {(t1, t′1), (t2, t′2), . . . , (tr , t′r)} denote the pairs of values in I such that α ′(ti) = α ′(t′i), for every i = 1, . . . , r.Without loss of generality we may assume that ti < t′i and t1 < t2 < . . . < tr . Let τ1 = t1 and τ ′1 = t′1. Suppose τi hasbeen defined and {tj : τi < tj} 6= ∅. Let τi+1 = minj∈{1,...,r}{tj : τ ′i < tj}. Let τ ′i = t′j where τi = tj .Now define α ′′ : I → intN ⊂ N ⊂ X such that α ′′([τi, τ ′i ]) = α ′′(τi) = α ′(τ ′i) and α ′(t) = α ′(t) otherwise, i.e., t isnot contained in an interval [τi, τ ′i ]. Note that since α ′(τi) = α ′(τ ′i) and α ′ is a γ-approximation of α , it follows thatdist(α(τi), α(τ ′i)) < 2γ. Hence diam([τi, τ ′i ]) < δ. Thus, diam α([τi, τ ′i ]) < ε/3. Hence, diam α ′([τi, τ ′i ]) < ε/3 + 2γ < ε.Thus α ′′ is an ε-approximation of α ′. A slight reparametrization of α ′′ gives the desired embedding.
Note that Theorem 5.1 applies to many types of spaces, including spaces of dimension n ≥ 4 that arise as a nesteddefining sequence of thickened (n− 2)-manifolds, including the totally wild flow and the k-ghastly spaces constructedin [3, 11].
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Theorem 5.3.
Every resolvable generalized manifold that has CRP has also P-DADP*.

Proof. The argument is very similar to that in the proof of Theorem 5.1. We again let g : K ×I → X be theconstant homotopy on α : K → X , where K is a 1-complex. By applying the crinkled ribbons property we obtain anapproximation g′ such that g′0(K ) ∩ g′1(K ) = ∅ and dimg′(K ×I) ≤ n − 2. The point set g′(K ×I) now takes on the roleof N in the proof of Theorem 5.1 in terms of approximating f . In particular, [6, Corollary 26.2A] also implies that g′(D×I)is 0-LCC in X so we can find an approximation f ′ of f such that f ′(Q∗×Q∗) ∩ g′(D×I) = ∅.
Theorem 5.4.
Every resolvable generalized manifold that has 1-LCC embedded points and CRP-T has also P-DADP.

Proof. The argument is almost identical to that of the proof of Theorem 5.3, except there are a finite number of pointsof intersection of g0 and g1. Specify that the image of f misses these points. Even more, let W be a closed neighborhoodof these points that misses the image of f . Specify that the image of the approximation f ′ of f also misses W . The onlyother modification is to let δ be the distance between g′0(I)−W and g′1(I)−W . Then proceed as before.
Since the 1-LCC condition implies the (0, 2)-DDP, the following result is a corollary of Theorems 4.4 and 5.4.
Corollary 5.5.
Every resolvable generalized manifold that has 1-LCC embedded points and CRP-T has also P-DADP*.

Examples of spaces having the crinkled ribbons property are the locally spherical resolvable generalized n-manifolds,
n ≥ 4, see [14].
Theorem 5.6.
If X is an ANR with DADP, then X has also CRP.

Proof. Let f : K ×I → X , where K is a 1-complex, be a constant homotopy. Since X has DADP, it has also DAP. Thus,we can find an approximation f ′ of f so that f ′(K ×{0}) ∩ f ′(K ×{1}) = ∅. Applying DADP we can then approximate
f ′ by a map f ′′ which misses the image of a countable dense collection of arcs in X . The approximation should besufficiently small to ensure f ′′(K ×{0}) ∩ f ′′(K ×{1}) = ∅. Then f ′′(K ×I) is 0-LCC embedded in X with empty interior.It follows that dim f ′′(K ×I) ≤ n − 2 (see [2, Proposition 4.9]). Hence f ′′ is the desired approximation of f . Therefore Xhas CRP.
Theorem 5.7.
If X is an ANR with DADP, then X has also CRP-T.

Proof. By Theorem 5.6, DADP implies CRP. The fact that CRP implies CRP-T immediately follows from the definitions.
Theorem 5.8.
If X is an ANR with DADP, then X has also the closed 0-stitched disks property.

Proof. Let f, g : D2 → I. Let K1 < K2 < . . . be a triangulation of D2 such that mesh(Ki) → 0. Let (K∞)(1) = ⋃
K (1)
i .Apply the DADP to get approximations f ′ of f and g′ of g so that f ′((K∞)(1)) ∩ g′(D2) = ∅, g′((K∞)(1)) ∩ f ′(D2) = ∅,and both f ′ and g′ are 1-1 on (K∞)(1). Let A = (f ′)−1(g′(D2)) and B = (g′)−1(f ′(D2)). Note that A and B are closed0-dimensional sets contained in D2 − (K∞)(1) and f ′(D2−A) ∩ g′(D2−B) = ∅. In particular, f ′ and g′ are 0-stitchedalong closed sets A and B, and away from (K∞)(1) in D2, such that f ′�(K∞)(1) ∪g′�(K∞)(1) is 1-1. Therefore X as the closed0-stitched disks property.
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Theorem 5.9.
Every ANR that has the closed 0-stitched disks property has also P-DADP.

Proof. Let f : D2 → X and α : I → X . Let g : D×I → X be the constant homotopy so that gt(x) = α(x). Apply theclosed 0-stitched disks property to obtain closed 0-dimensional sets A and B, infinite 1-skeleta (K∞j )(1) for j = 1, 2, andapproximations f ′ and g′ such that f ′ is 1-1 on (K∞1 )(1), g′ is 1-1 on (K∞2 )(1), and f ′(D2−A) ∩ g′(D2−B) = ∅.Let p : D×I → I be the natural projection map. Without loss of generality we may assume that p�B is 1-1 [11, Propo-sition 4.6]. Let J = [a, b] be an interval in I so that P(B) ∩ J = ∅. Thus B ∩ (D×J) = ∅. Since g′ is 1-1 on (K∞2 )(1),we may also assume, by a slight modification of the level lines if necessary, that D×{a, b} is contained in the infinite1-skeleton so that g′�D×{a,b} is 1-1. More particulary, we need that g′a(D) ∩ g′b(D) = ∅. Let δ = dist(g′a(D), g′b(D)). Let
α ′ = ga.By the choice of f ′ and g′, f ′(D2−A) ∩ g′(D2−B) = ∅. Since D×J ⊂ D2 − B, it follows that (f ′)(−1)g′(D×J) ⊂ A. Let
γ > 0 be a value so that if Z ⊂ D2 and diamZ < γ, then diam f(Z ) < δ. Let (K∞1 )(1) = ⋃

K (1)
i where K1 < K2 < . . .and meshKi → 0. Choose m so that meshKm < γ. The complex Km will be the required cell complex T in thedefinition of P-DADP. Note that f ′(K (1)

m
)
∩ g′(D×J) = ∅ since f ′(−1)g′(D×J) ⊂ A and K (1)

m ⊂ D2 − A. Also note that
α ′ = ga : I → X − f ′

(
K (1)
m
). By the choice of γ and i, for each σ ∈ K (2)

m , at least one of the cases f ′(σ )∩ g′(D×{a}) = ∅or f ′(σ ) ∩ g′(D×{b}) = ∅ holds true. If f ′(σ ) ∩ g′(D×{a}) = ∅, let Hσ be the constant path homotopy on g′a. If
f ′(σ ) ∩ g′(D×{a}) 6= ∅, then f ′(σ ) ∩ g′(D×{b}) = ∅, so let Hσ be the realization of g′�D× [a,b]. The cell complex T = Kiand the maps f ′ and α ′ together with the homotopies Hσ for σ ∈ T (2) demonstrate that X has P-DADP.
The following is a corollary to Theorems 4.8, 5.8, and 5.9. It also follows more directly as a corollary to Theorem 4.8since DADP implies P-DADP trivially.
Corollary 5.10.
If X is an ANR with DADP, then X has δ-FRP.

6. Summary of property relationships

The relationships amongst general position properties used to detect codimension one manifold factors is summarizedin the chart in Figure 1. Equivalent properties are boxed together. The characterizing properties are indicated in thebolded box. An arrow implies an implication. A filled in dot at the beginning of the arrow indicates that the reverseimplication is known to be false. An arrow without a filled in dot at the beginning indicates that the validity of thereverse implication is at present unknown. A filled in dot with a line not ending in an arrow indicates that the implicationis not known, but the reverse implication is known to be false.The fact that a resolvable generalized manifold of dimension n ≥ 4 is a codimension one manifold factor if and only ifit has the disjoint path concordances property is proved in [7]. Thus the disjoint path concordances property provides acharacterization of codimension one manifold factors.The equivalence of the disjoint topographies property and the disjoint path concordances property was proved in [14].Thus the disjoint topographies property also provides a characterization of codimension one manifold factors.The fact that a resolvable generalized manifold that has the disjoint homotopies property is a codimension one manifoldfactor is proved in [11]. It is unknown whether the disjoint topographies property implies the disjoint homotopies property.The fact that a resolvable generalized manifold that has the piecewise disjoint arc-disk property also has the disjointhomotopies property and hence is a codimension one manifold factor is Theorem 1.1. It is unknown whether the disjointhomotopies property implies the piecewise disjoint arc-disk property.The fact that a resolvable generalized manifold that has the 0-stitched disks property satisfies the disjoint homotopiesproperty, and hence is a codimension one manifold factor is proved in [13]. It is unknown whether the disjoint homotopiesproperty implies the 0-stitched disks property.
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Figure 1. Relationships amongst general position properties that detect codimension one manifold factors.

The fact that the closed 0-stitched disks property implies the 0-stitched disks property trivially follows from the defini-tions. Thus Corollary 3.17 states that a resolvable generalized manifold that has the closed 0-stitched disks propertysatisfies the disjoint homotopies property, and hence is a codimension one manifold factor. It is unknown whether the0-stitched disks property implies the closed 0-stitched disks property.The fact that the closed 0-stitched disk property implies the piecewise disjoint arc-disk property is Theorem 5.9. It isunknown whether the reverse implication is true.The fact that a resolvable generalized manifold that has a dense collection of δ-fractured maps also has the disjointhomotopies property, and hence is a codimension one manifold factor is proved in [12]. The fact that a resolvablegeneralized manifold that has the δ-fractured maps property, defined in terms of the modified version of the definitionof δ-fractured maps, also has the disjoint homotopies property, and hence is a codimension one manifold factor isTheorem 3.11. It is unknown whether the reverse implications are true.The equivalence of the piecewise disjoint arc-disk property and δ-fractured maps property is stated in Theorem 1.1.The equivalence of the piecewise disjoint arc-disk property* and the strong fuzzy ribbons property is stated in Theo-rem 4.6.The fact that the strong fuzzy ribbons property implies the fuzzy ribbons property trivially follows from the definition. Itis unknown whether the reverse implication is true.The fact that the fuzzy ribbons property implies the disjoint topographies property is shown in [14]. It is unknownwhether the reverse implication is true.The fact that the piecewise disjoint arc-disk property* implies the piecewise disjoint arc-disk property trivially followsfrom the definition. The reverse implication in the case of a space with (0, 2)-DDP is stated in Theorem 4.4. It isunknown whether the reverse implication is true in general.The fact that a resolvable generalized manifold of dimension n ≥ 4 that has the plentiful 2-manifolds property has thedisjoint homotopies property, and hence is a codimension one manifold factor is proved in [11]. The reverse implication isnot true. The 2-ghastly space shown in [9] to be codimension one manifold factors do not have the plentiful 2-manifoldsproperty.The fact that the plentiful 2-manifolds property implies the piecewise disjoint arc-disk property is stated in Theorem 5.1.The fact that the crinkled ribbons property implies the piecewise disjoint arc-disk property* is stated in Theorem 5.3.
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The fact that the twisted crinkled ribbons property in the case of an ANR with 1-LCC embedded point implies boththe piecewise disjoint arc-disk property and the piecewise disjoint arc-disk property* is stated in Theorem 5.4 andCorollary 5.5, respectively. None of the reverse implications for these properties are true. The 2-ghastly space shownin [9] to be codimension one manifold factors do not have any of these properties.The fact the that the crinkled ribbons property implies the twisted crinkled ribbons property is immediate from thedefinitions. The fact the plentiful 2-manifolds property implies the twisted crinkled ribbons property in the case of aresolvable generalized manifold of dimension n ≥ 4 is also immediate from the definitions. It is unknown whether thereverse implications are true.The fact that a resolvable generalized manifold that has the disjoint arc-disk property is a codimension one manifoldfactor was first proved in [5]. In fact, the disjoint arc-disk property implies the disjoint homotopies property [11]. Thereverse implication is not true. The totally wild flow has the disjoint homotopies property, and therefore is a codimensionone manifold factor, but fails to have the disjoint arc-disk property [3, 11].The fact that the disjoint arc-disk property implies the crinkled ribbons property is stated in Theorem 5.6. The fact thatthe disjoint arc-disk property implies the twisted crinkled ribbons property in the case of an ANR is stated in Theorem 5.7.The fact that the disjoint arc-disk property implies the closed 0-stitched disks property, and hence the 0-stitched disksproperty is stated in Theorem 5.8. The fact that the disjoint arc-disk property implies the δ-fractured maps property isCorollary 5.10. This means that the disjoint arc-disk property implies all other properties, with the possible exception ofthe plentiful 2-manifolds property. The reverse implications are not true. There are k-ghastly spaces (k > 2) that satisfythe plentiful 2-manifolds property and the ribbons properties, but do not satisfy the disjoint arc-disk properties. Thereare 2-ghastly spaces that satisfy all other properties besides the plentiful 2-manifolds property, the crinkled ribbonsproperty and the twisted crinkled ribbons property, but do not satisfy the disjoint arc-disk property.
7. Epilogue

We provide a list of several interesting problems that remain unsolved:
(a) Does P-DADP* imply DTP?
(b) Does P-DADP imply DHP?
(c) Do P-DADP or P-DADP* imply the 0-stitched disks property?
(d) Do P-DADP or P-DADP* imply the closed 0-stitched disks property?
(e) Does the 0-stitched disks property imply P-DADP?
(f) Does DHP imply the 0-stitched disks property?
(g) Do (n− 2)-dimensional decompositions arising from a defining sequence of thickened (n− 2)-manifolds have P-DADP?
(h) Recently, we have proved in [16] that decomposition spaces resulting from decompositions of Rn, n ≥ 4, into convexsets are topologically equivalent to Rn. In fact, such spaces possess the DADP property. Is there a generaliza-tion of this result utilizing P-DADP? For example, what about decompositions into star-like sets or sets that arehomeomorphic to convex sets (such as decompositions into arcs and points)?
(i) Does P-DADP provide a characterization of resolvable generalized manifolds as codimension one manifold factors?
(j) Do all resolvable generalized manifold of dimension n ≥ 4 satisfy P-DADP?
In this paper we have demonstrated that, as a unifying property, the piecewise disjoint arc-disk property is a powerful toolin detecting codimension one manifold factors. It has the potential to lead to even further insights in demonstrating thatall resolvable generalized manifolds of dimension n ≥ 4 are codimension one manifold factors or finding a counterexample,thereby solving the famous generalized R.L. Moore problem [4, 15].
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