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S 1-BOTT FUNCTIONS ON MANIFOLDS

D. Repovš1 and V. Sharko2 UDC 513.944

We study S1-Bott functions on compact smooth manifolds. In particular, we investigate S1-invariant
Bott functions on manifolds with circle action.

1. Introduction

Let M n be a compact closed manifold of dimension at least 3. We study the S1-Bott functions on M n:

Separately, we investigate S1-invariant Bott functions on M 2n with semifree circle action that have finitely many
fixed points. The aim of this paper is to find the exact values of the minimum numbers of singular circles of some
indices of S1-invariant Bott functions on M 2n:

A more flexible object closely related to the S1-Bott function on a manifold M n is the decomposition of a
round handle of M n: In turn, to study the round-handle decomposition of M n; we use a diagram, i.e., a graph
that carries information on handles.

2. S 1-Bott Functions

Let M n be a smooth manifold, let f WM n ! Œ0; 1� be a smooth function, and let x 2 M n be one of its
critical points. Consider the Hessian �x.f /WTx �Tx ! R at this point. Recall that the index of the Hessian is the
maximum dimension of Tx for which �x.f / is negative definite. The index of �x.f / is called the index of the
critical point x; and the corank of �x.f / is called the corank of x: Suppose that the set of critical points of f
forms a disjoint union of smooth submanifolds Kij whose dimensions do not exceed n � 1: A connected critical

submanifold K
i0
j0

is called nondegenerate if the Hessian is nondegenerate on subspaces orthogonal to K
i0
j0

(i.e.,

has the corank equal to n � i0/ at every point x 2 Ki0j0
:

Definition 2.1. A mapping f WM n ! Œ0; 1� is called a Bott function if all critical points of it form nonde-
generate critical submanifolds that do not intersect the boundary of M n:

Consider the following important example of Bott functions:

Definition 2.2. A mapping f WM n ! Œ0; 1� is called an S1-Bott function if all critical points of it form
nondegenerate critical circles.

Note that S1-Bott functions do not exist on any smooth manifold [12]. S1-Bott functions were studied and
used by many authors [1–7, 9, 11, 14]. The following theorem can be found in [8, 11]:
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Theorem 2.1. Let M n be a smooth closed manifold, let f WM n ! Œ0; 1� be an S1-Bott function, and let
 �M n be its critical circle. Then there is a system of coordinates in a neighborhood of  of one of the following
types:

1. Trivial �WS1 �Dn�1."/!M n; where Dn�1."/ is a disk of radius "; �.S1 � 0/ D ; and

f
�
�.�; x/

�
D �x21 � : : : � x

2
� C x

2
�C1 C : : :C x

2
n�1 for .�; x/ 2 S1 �Dn�1."/:

2. Twisted � W .Œ0; 1��Dn�1."/=�/!M n; where � is a smooth imbedding such that .�.Œ0; 1�/�0=�/ D 
and

f .�.t; x// D �x21 � : : : � x
2
� C x

2
�C1 C : : :C x

2
n�1 for .t; x/ 2 .� W Œ0; 1� �Dn�1."/=�/:

Here, .Œ0; 1��Dn�1."/=�/ is diffeomorphic to S1�Dn�1."/ on the identification of 0�Dn�1."/ and
1 �Dn�1."/ by the mapping

.0; x1; : : : ; x�; x�C1; : : : ; xn�1/$ .1;�x1; : : : ; x�;�x�C1; : : : ; xn�1/:

The number � is called the index of the critical circle :

Let M n be a smooth manifold and let f WM n ! Œ0; n� be an S1-Bott function. We say that f is a nice
S1-Bott function if the submanifold

Mi .f / D f
�1

�
0; i C

1

2

�
contains all closed orbits of index � � i: Every nice S1-Bott function defines a filtration on the manifold
M nWM0.f / � M1.f / � : : : � Mn�1.f / � M n: It is well known [11] that the existence of a nice S1-
Bott function on a manifold is equivalent to the existence of a round-handle decomposition of the manifold. We
recall some necessary definitions.

Definition 2.3. We define an n-dimensional round handle R� of index � as follows:

R� D S
1
�D� �Dn���1;

where Di is a disk of dimension i.
We define a twisted n-dimensional round handle TR� of index �; 0 < � < n � 1; as follows:

TR� D Œ0; 1� �D
�
�Dn���1=�;

where the identification is given by the mapping

.0; x1; : : : ; x�; x�C1; : : : ; xn�1/$ .1;�x1; : : : ; x�;�x�C1; : : : ; xn�1/:

Apparently, Thurston [15] was the first who noted that the existence of an S1-Bott function on a manifold is
equivalent to the existence of a handle decomposition of the manifold. We describe this fact in more detail.
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Definition 2.4. We say that a manifold M n
�

is obtained from a smooth manifold M n by attaching a round
handle of index � if

M n
� DM

n
[
'

S1 �D� �Dn���1;

where 'WS1 � @D� �Dn���1 ! @M n is a smooth imbedding.
A manifold M n

�
is obtained from a smooth manifold M n by gluing a twisted round handle of index � if

M n
� DM

n
[
'

Œ0; 1� �D� �Dn���1=�;

where 'W .Œ0; 1� � @D� �Dn���1=�/!M n is a smooth imbedding.

Definition 2.5. A round-handle decomposition of a smooth manifold M n is a filtration

@M n
� Œ0; 1� DM n

0 .R/ �M
n
1 .R/ � : : : �M

n
n�1.R/ DM

n;

where the manifold M n
i .R/ is obtained from the manifold M n

i�1.R/ by gluing round handles and twisted round
handles of index i: In the case where M n is a closed manifold, the filtration begins with round handles of index 0:

In what follows, we recall the relationship between S1 and the round-handle decomposition [11].

Theorem 2.2. Let M n be a smooth closed manifold. The following two conditions are equivalent:

1. On the manifold M n; there is a nice S1-Bott function with critical circles 1; : : : ; k of indices
�1; : : : ; �k with trivial coordinate systems and critical circles Q1; : : : ; Ql of indices �1; : : : ; �l with
twisted coordinate systems.

2. The manifold M n admits a round-handle decomposition consisting of round handles R�1
; : : : ; R�k

of
indices �1; : : : ; �k and twisted round handles TR�1

; : : : ; TR�l
of indices �1; : : : ; �l such that the

critical circle i corresponds to a round handle R�i
; 1 � i � k; and the critical circle Qj corresponds

to a twisted round handle TR�j
; 1 � j � l:

Thus, every nice S1-Bott function on the manifold M n generates a round-handle decomposition of M n and
vice versa.

The following result belongs to Asimov [5]:

Theorem 2.3. Let M n be a smooth closed manifold .n > 3/ with Euler characteristic �.M n/ D 0: Then
M n admits a round-handle decomposition.

For three-dimensional manifolds, the situation is much more complicated [1, 12], and there are closed three-
manifolds that do not admit a round-handle decomposition. The recent results on the three-dimensional Poincaré
conjecture imply that a simply-connected three-dimensional manifold admits a round-handle decomposition.

We are interested in conditions under which an S1-Bott function on M n has the property that all its critical
circles have a trivial coordinate system. We recall the necessary facts from [4].
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By definition, an n-dimensional handle H� of index � is H� D D��Dn��: We say that a smooth manifold
M n
�

is obtained from a smooth manifold M n by attaching handles of index � if

M n
� DM

n
[
'

D� �Dn��;

where 'W @D��Dn�� ! @M n is a smooth imbedding. @D��0 .D��0/ is called the core (disk) of the handle
D� �Dn��; and @Dn�� � 0 .Dn�� � 0/ is called its co-core sphere (disk).

A handle decomposition of a smooth manifold M n is a filtration

@M n
� Œ0; 1� DM n

0 �M
n
1 � : : : �M

n
n DM

n;

where the manifold M n
i is obtained from M n

i�1 by attaching handles of index i:
In the case where M n is a closed manifold, the filtration begins with handles of index 0: There is a close

relationship between the round-handle decomposition of a manifold and its handle decomposition; in [5], the
following lemma was proved:

Lemma 2.1. Let M n DM n
1 CH�CH�C1 be a smooth manifold obtained from the manifold with boundary

M n
1 by attaching handles of indices � and �C 1 that do not intersect .n > 2/: If � > 0; then the manifold M n

can be represented as M n DM n
1 CR�; where R� denotes the round handle of index �:

Lemma 2.2. Let M n be a smooth manifold .n > 2/ obtained from the manifold with boundary M n
1 by

attaching round (or twisted round) handles of index � > 0: Then the manifold M n can be represented as M n D

M n
1 CH� CH�C1: If the round handle R� was glued, then the intersection index of H� and H�C1 is equal

to 0:
If the twisted handle TR� is glued, then the intersection index of H� and H�C1 is equal to ˙2:

Proof. The case where a handle is attached was proved in [4] (Lemma VIII.2). If the twisted handle TR� is
glued to M n

1 ; then the argument is the same. Let 'W .Œ0; 1� � @D� �Dn���1=�/! @M n
1 be a gluing mapping.

We represent '.Œ0; 1� � 0 � 0=�/ as the sum of two segments I1 and I2 such that I1 \ I2 D @I1 D @I2 and
I1[I2 D .'

�
Œ0; 1��0�0=�

�
: Consider the submanifold H� D I1�D��Dn���1: It can obviously be regarded

as a handle of index � that is attached to @M n
1 along the set @D� �Dn���1 � I1 with the restriction of ': It is

clear that the manifold

H�C1 D TR� n .I1 �D
� �Dn���1/ D I2 �D

�
�Dn���1

is a handle of index �C 1 that is attached to @.M n
1 [H�/ along the set .@I2 �D� [ I2 � @D�/ �Dn���1:

By construction, the intersection index of these two handles is equal to ˙2:
Lemma 2.2 is proved.

Lemma 2.3. Let M n be a smooth closed manifold, let f WM n ! Œ0; 1� be an S1-Bott function, and let c
be its critical value. Suppose that " > 0 and there are no other critical values on the interval Œc � "; c C "�:
Assume that, on the surface level f �1.c/; there are critical circles 1; : : : ; k of indices �1; : : : ; �k with trivial
coordinate systems and there are critical circles Q1; : : : ; Ql of indices �1; : : : ; �l with twisted coordinate systems.
Then the homology group H�

�
f �1Œc�"; cC"�; f �1.c�"/;Z

�
is generated exactly by the handles that correspond

to the critical circles 1; : : : ; k; Q1; : : : ; Ql : Each circle i generates two subgroups that are isomorphic to Z;
a direct product in the homology group H�i

�
f �1Œc � "; c C "�; f �1.c � "/;Z

�
and the other in the homology
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group H�iC1

�
f �1Œc�"; cC"�; f �1.c�"/;Z

�
: Each circle Qj generates a subgroup Z2 that is a direct product

in a group H�j

�
f �1Œc � "; c C "�; f �1.c � "/;Z

�
:

Proof. Consider a function f associated with the decomposition of the manifold f �1Œc � "; c C "� by
round and twisted handles. Thus, the critical circles lie on the same level of the decomposition of round and
twisted handles. We can choose handles so that they do not intersect each other. If we replace the round handles
by the handles from the previous lemma, then each twisted round handle of index � generates the homology of a
subgroup isomorphic to Z2 in dimension �; and each round handle of index � generates the homology of two
subgroups isomorphic to Z in dimensions � and �C 1:

Lemma 2.3 is proved.

Corollary 2.1. Let M n be a smooth closed manifold, let f WM n ! Œ0; 1� be an S1-Bott function, and let
c1; : : : ; ck be its critical values. Suppose that "i > 0; 1 � i � k; is such that the interval Œci � "i ; ci C "i �
does not have other critical values. Then, on the level surface f �1.ci /; there are only critical circles with trivial
coordinate systems if and only if the nonzero homology groups H�

�
f �1Œci � "i ; ci C "i �; f

�1.ci � "i /;Z
�

are
free Abelian groups.

Thus, we have a homological criterion for S1-Bott functions to have no critical circles with twisted coordinate
systems.

In the next section, we give another class of S1-Bott functions that do not have critical circles with twisted
coordinate systems.

3. Diagrams of S 1-Bott Functions and Their Applications

In this section, we explore S1-Bott functions. Recall the definition of partitions of diagrams [4]. The partitions
of diagrams represent the construction of S1-Bott functions, especially for simply-connected manifolds.

Consider the decomposition of a closed smooth manifold M n by handles M n
0 � M

n
1 � : : : � M

n
n D M n;

where the manifold M n
i is obtained from the manifold M n

i�1 by attaching handles of index i: Assume that

Ci D Hi .M
n
i ;M

n
i�1;Z/ � Z˚ : : :˚ Z„ ƒ‚ …

ki

;

where ki is the number of handles of index i: Mean disk handles of index i form a basis for the homology groups
Hi .M

n
i ;M

n
i�1;Z/: Using the exact homology sequence for the triple M n

i�1 � M
n
i � M

n
iC1; we can construct a

chain complex of free Abelian groups, namely

.C; @/WC0  : : : Ci�1
@i
 � Ci

@iC1

 ��� CiC1  : : : Cn;

whose homology coincides with the homology of the manifold M n: Suppose that the manifold M n is oriented.
The choice of orientation allows us to orient the medium and comedium spheres of the handle, which enables us
to determine the homology indices � and �C 1 in the manifolds @M n

�
: Thus, the homomorphism @� is given

by the matrix of indices of homologous intersections of the right-hand and left-hand spheres of handles in the
submanifold @M n

�
:

If each handle determines a vertex and we bridge the edges of the vertices for which the corresponding handles
have a nonzero intersection, then we obtain a graph. Note that the structure of this graph can be complicated.
However, it can be simplified.
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It is known [4] that, by the addition of handles, all matrices of homomorphisms @i ; 0 � i � n; can be made
diagonal.

Suppose that M n is a simply-connected manifold, n > 5; and there are no handles of indices 1 and n � 1:
Then, certainly, the homologies of the intersection indices of the right-hand and left-hand spheres coincide with
their geometric intersection indices.

Thus, a pair of adjacent handles with indices � and �C 1 may either not intersect or have the intersection
˙1; ˙2; or ˙m; where jmj > 2: Since the Euler characteristic of a closed smooth manifold M n that admits
a round-handle decomposition is zero, it follows that, for the handle decomposition of M n , we can introduce the
following object (diagram): A diagram is a disconnected graph whose vertices correspond to handles and whose
edges connect vertices if and only if the intersection of the handle is nonzero. A more precise definition is presented
below.

Definition 3.1. �n is called a diagram of length n if the plane is given by n C 1 sets of points�
a10; : : : ; a

1
k0
I a11; : : : ; a

1
k1
I : : : I an1 ; : : : ; a

n
kn

�
that satisfy the following conditions:

(1) for some i; the set .ai1; : : : ; a
i
ki
/ may be empty;

(2) k0 � k1 C k2 � : : :C .�1/
nkn D 0I

(3) a point of the set .ai1; : : : ; a
i
ki
/; 1 < i < n� 1; can be connected either with only one point from the set�

ai�11 ; : : : ; ai�1
ki�1

�
or with only one point from .aiC11 ; : : : ; aiC1

kiC1
/ in one of the following three ways:

, , .

A set of points a01; : : : ; a
1
k0
I : : : I ai1; : : : ; a

i
ki

is called an i -skeleton diagram �n .
A point at which the chart is not linked to some other point is called free. If the chart has a fragment

a j
i

at
i+1,

then aii is called a semifree point (the intersection of the handle is ˙2/: If there is a fragment

a j
i

at
i+1,

then aii is called a dependent point (the intersection of the handle is ˙m/: The fragment

a j
i

at
i+1

is called inserted in dimension i (the index of intersection of the corresponding handles is equal to ˙1/:

Definition 3.2. Two points of dimensions i and i C 1 are independent in the dimension i if there is no
connection between them or if they form the fragment

.
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In what follows, we divide a chart into disjoint pairs of independent points. Let us introduce a restriction for
the fragments of the diagram form, namely,

a j
i at

i+1
a j
i at

i+1
a j
i at

i+1, , ,

ak
i at

i+1
ak
i at

i+1
ak
i at

i+1, , .

We do not allow breaking any of the fragments into a pair of the form .aij ; a
iC1
t /; .ai

k
; aiC1
l

/:

Definition 3.3. If a chart �n can be represented as a disjoint union of independent pairs of points, then it
admits a partition. The two points .aij ; a

iC1
k

/ of this partition are called the vertices of the partition in dimen-
sion i:

Let us fix a partition of the diagram �n and denote it by �n.�/: It is possible that the diagram �n.�/ does
not admit a partition because, in some dimensions, it may not have enough points for the formation of independent
pairs.

Definition 3.4. The base of the diagram �n is the diagram �n obtained from �n by eliminating all inserts.

Definition 3.5. A stabilization of the diagram �n in dimension i is a diagram of the form �
S.i/
n D

�n[
i
Ai ; where Ai is a new insert in dimension i:

Lemma 3.1. For each chart �n; there exists its stabilization in dimensions i1; : : : ; is; denoted by
�
S.i1;:::;is/
n ; for which the diagram �

S.i1;:::;is/
n admits a partition.

Definition 3.6. The number �i .�n/ D ki � ki�1 C : : :C .�1/iC1k0 is called the i th Euler characteristic
of the diagram �n:

Obviously, the insertion of dimension i increases the i th Euler characteristic of �S.i/n by one and does not
change the values of the remaining j th Euler characteristics �j

�
�
S.i/
n

�
D �j .�n/ for j ¤ i:

Lemma 3.2. If the diagram �n admits a partition, then the number of vertices of a partition of �n in each
dimension is the same for all of its possible partitions.

Suppose that the diagram �n admits a partition. Denote the number of vertices in dimension i of a partition
of �n by mi .�n/ and let

M.�n/ D

iX
jD0

mj .�n/:

In view of the lemma, these numbers do not depend on the choice of a particular partition of the diagram �n:

Definition 3.7. The dimension � of a chart �n is called singular if ���1.�n/ D ��C1.�n/ D 0;

��.�n/ D k > 0; and the chart �n in dimension � does not consist of semifree fragments.

In the process of decomposition of the diagram �n into a pair of independent points, it is necessary in this
situation to make one box of dimension � � 1 or � C 1; which leads to ambiguity. This will result in different
numbers of pairs in dimension �C 1 or �C 1; depending on whether we have made insertions in any dimension.
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Lemma 3.3. The diagram �n D
�
a10; : : : ; a

1
k0
I a11; : : : ; a

1
k1
I : : : I an1 ; : : : ; a

n
kn

�
admits a partition if and only

if it does not have negative i th Euler characteristics and singular dimensions. If the diagram �n admits a
partition, then the number of vertices in dimension i of a partition is equal to mi .�n/ D �i .�n/:

If the diagram �n does not admit a partition, then there exists its stabilization �Sn such that the diagram �Sn
admits a partition. There arises the question of the minimum possible number of vertices in dimension i among
the stabilized diagrams �Sj

n having a partition.
For diagram �n; let msi .�n/ denote the minimum possible number of vertices in dimension i among the

stabilized diagrams �Sj

n having a partition.
Let N be the set of integers. We put

�.n/ D
1

2

�
nC jnj

�
;

where n 2 N:

Theorem 3.1. Let �n be an arbitrary diagram. Then msi .�n/ of the diagram �n is equal to msi .�n/ D

�
�
�i .�n/

�
: If �Sn is a stabilization of the diagram �n; then msi .�

S
n / � m

s
i .�/:

Definition 3.8. For the diagram �n; its i th Morse number Mi .�n/ is the number msi .�n/; where �n is
the base of the diagram �n:

Definition 3.9. A diagram �n is called exact if there exists a stabilization �
S�
n of �n such that �S�n

admits a partition with the number of vertices in dimension i equal to mi .�
S�
n / D Mi .�n/ simultaneously for

all i:

Theorem 3.2. The diagram �n is exact if and only if it does not have singular dimensions.

A stabilization of the diagram �n is called economical if

(1) for �i .�n/ D k < 0; one performs k insertions in the dimension i;

(2) in the case where i is a singular dimension, then one performs an insertion in the dimension i � 1 or
i C 1:

We now describe how one can construct a diagram �n on a round-handle decomposition of a smooth closed
manifold M n:

Let M n
0 .R/ � M n

1 .R/ � : : : � M n
n�1.R/ D M n be a round-handle decomposition of M n: Using

Lemma 2.2, we replace each handle of index � by two ordinary handles of indices � and � C 1: As a re-
sult, we obtain a handle decomposition of the manifold M n; namely M n

0 �M
n
1 � : : : �M

n
n DM

n: Using this
handle decomposition of M n; we can construct a chain complex of free abelian groups:

.C; @/WC0  : : : Ci�1
@i
 � Ci

@iC1

 ��� CiC1  : : : Cn:

Reducing the matrix of differentials to the diagonal form, we construct the diagram �n:

The following statement is true:

Proposition 3.1. Let M n
0 .R/ �M

n
1 .R/ � : : : �M

n
n�1.R/ DM

n be a round-handle decomposition of the
manifold M n and let �n be the diagram associated with this decomposition. Assume that the diagram �n does
not have semifree vertices. If the diagram �n is the economical stabilization of its base �n; then the original
round-handle decomposition has missing twisted round handles.
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Proof. Indeed, in this case, the diagram �n does not allow the insertion of a round twisted handle. All points
of insertion are involved in the formation of vertices with other points of the diagram, and, by the condition of the
proposition, there are no semifree vertices.

Remark 3.1. It is easy to construct a decomposition of the manifold M n by round handles among which
there are twisted round handles but, at the same time, no semifree vertices are associated with this decomposition
diagram.

Definition 3.10. Let M n be a smooth closed manifold. The number

�i .M
n/ D �

�
Hi .M

n;Z/
�
� �

�
Hi�1.M

n;Z/
�
C : : :C .�1/iC1�

�
H0.M

n;Z/
�

is called the i th Euler characteristic of M n; where �.H/ is the minimal number of generators H:

Definition 3.11. The dimension � of a closed manifold M n is called singular if H�.M n;Z/ is a nonzero
finite group distinct from Z2 ˚ : : :˚ Z2 and ���1.M n/ D ��C1.M

n/ D 0:

Definition 3.12. Let M n be a smooth closed manifold. A round-handle decomposition is called quasimini-
mal if one of the following conditions is satisfied:

(1) the number of round handles of index i is equal to �.�i
�
M n/

�
C "i ; where "i D 0 if the dimension

i C 1 is nonsingular, and "i D 1 if the dimension i C 1 is singular;

(2) the number of round handles of index i is equal to �
�
�i .M

n/
�
I if the dimension i C 1 is singular, then

there is only one handle of index i C 2:

In both cases, the number of round handles of index i C 1 is equal to �
�
�iC1.M

n/
�
:

A round-handle decomposition is called minimal if the number of round handles of index i is equal to
�
�
�i .M

n/
�

for all i:

Using the handle decomposition of a manifold and the diagram technique, we can easily prove the following
fact [4]:

Proposition 3.2. Let M n be a smooth, closed, simply-connected manifold .n > 5/: Then M n admits a
quasiminimal round-handle decomposition. If the manifold M n does not have singular dimensions, then M n

admits a minimal round-handle decomposition.

Definition 3.13. Assume that the manifold M n admits an S1-Bott function. Then the S1-Morse number
MS1

i .M n/ of index i is the minimum number of singular circles of index i taken over all S1-Bott functions
on M n:

Lemma 3.4. Suppose that, on a closed manifold M n; a smooth function f WM n ! R exists such that each
connected component of the singular set †f of f is either a nondegenerate critical point pi ; i D 1; : : : ; k; or
a nondegenerate critical circle S1j ; j D 1; : : : ; l: Then the Euler characteristic of the manifold M n is equal to

�.M n/ D

kX
iD1

.�1/index.pi /:
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Proof. It is known that, for any Morse function gWM n ! R with critical points pi ; i D 1; : : : ; q; on the
manifold M n; the following relation is true:

�.M n/ D

qX
iD1

.�1/index.pi /:

By a small perturbation of the function f; any nondegenerate critical circle S1j of index � can be replaced by
nondegenerate critical points of indices � and �C 1 [1]. Therefore, the contribution to the formula for the Euler
characteristic of these critical points is zero, and we obtain the desired formula.

4. Manifolds with Free S 1-Action

Assume that there is smooth free circle action on the smooth manifold M n: Then, of course, the set M n=S1

is a manifold, and the natural projection pWM n !M n=S1 is a fiber bundle. Every smooth S1-invariant function
f WM n ! R on a manifold M n is called an S1-invariant Bott function if each connected component of the
singular set †f is a nondegenerate critical circle.

It is clear that if f is an S1-invariant Bott function on the manifold M n; then its projection ��.f /W

M n=S1 ! R is a Morse function. Conversely, if gWM n=S1 ! R is a Morse function on the manifold M n=S1;

then ��1� .g/ D g ı � WM n ! R is an S1-invariant Bott function on the manifold M n: The critical point of
index � of the function g corresponds to the critical circle of index � of the function ��1� .g/:

In this situation, for the manifold M n; the S1-equivariant Morse number M eqS1

i .M n/ of index i is the
minimum number of singular circles of index i taken over all S1-invariant Bott functions on M n:

For the manifold M n=S1; the Morse number Mi .M
n=S1/ of index i is the minimum number of critical

points of index i taken over all Morse functions on M n=S1:

Therefore, for the calculation of the S1-equivariant Morse number of index i; it is possible to use Morse
functions on the manifold M n=S1: The following fact is obvious:

Corollary 4.1. Suppose that there is a smooth free circle action on the smooth manifold M n: Then, for the
manifold M n; the S1-equivariant Morse number of index i is equal to the Morse number of index i for the
manifold M n=S1:

A good example in this direction is the fiber bundle pWS2nC1 ! CPn: For this S1-action, the S1-equi-
variant Morse number is equal to 1 for even indices and to 0 for odd indices.

The next example shows that the S1-equivariant Morse number of the manifold M n depends on the circle
action.

Let pWS3 ! S2 be a Hopf fiber bundle. Suppose that there is a trivial circle action on S1: Using the Hopf
fiber bundle and trivial circle action on S1; we construct a new fiber bundle p � idWS3 � S1 ! S2 � S1: It is
clear that, on the manifold S2 � S1; there is a Morse function with one critical point of indices 0; 1; 2; and 3:
Therefore, for this circle action on the manifold S2 �S1; the S1-equivariant Morse number is equal to 1 for any
index.

On the other hand, assume that there is a trivial circle action on S3 and q is a rotation on S1: Consider the
fiber bundle id � qWS3 � S1 ! S3: On S3; there is a Morse function with one critical point of indices 0 and
3: Therefore, in this situation, for the manifold S3 � S1; the S1-equivariant Morse number is equal to 1 for the
indices 0 and 3 and to 0 for the other indices.

Remark 4.1. This example shows that, for the manifold, the S1-equivariant Morse number and the S1-Morse
number of some index may be different.
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Definition 4.1. Assume that there is a smooth free circle action on a smooth manifold M n: This free circle
action is minimal if, for all indices, the S1-equivariant Morse number is equal to the S1-Morse number for the
manifold M n:

Corollary 4.2. Suppose that there is a smooth minimal free circle action on a smooth simply-connected man-
ifold M n: Then the manifold M n does not have singular dimensions.

Proof. The corollary is obviously valid for dimension 3:
A manifold that admits a free circle action has Euler characteristic zero. If n D 4; then a free action does not

exist on simply-connected manifolds M 4 because the Euler characteristic of a simply-connected four-dimensional
manifold is always positive.

It follows from the structure of homology groups that a simply-connected manifold M n; 8 � n � 5; does
not have singular dimensions.

Let n � 9: Suppose that there is a minimal smooth free circle action on M n: It is obvious that

Mi .M
n=S1/ DM

eqS1

i .M n/:

By the Smale theorem [10], on the manifold Mi .M
n=S1/ there is a Morse function with the number of critical

points of index i equal to Mi .M
n=S1/ for all i simultaneously. Therefore, on the manifold M n; there exists an

S1-invariant Bott function f with the number of critical circles of index i equal to Mi .M
n=S1/ DM

eqS1

i .M n/

for all i simultaneously. Since the free circle action is minimal, we have MS1

i .M n/ D M
eqS1

i .M n/: If the
simply-connected manifold M n has a singular dimension, then the S1-Bott function on M n cannot have the
number of critical circles of index i equal to the i th S1-Morse number MS1

i .M n/ for all i simultaneously.
Consequently, the manifold M n does not have singular dimensions.

Corollary 4.2 is proved.

Theorem 4.1. Suppose that there is a smooth free circle action on a smooth simply-connected manifold M n:

This circle action is minimal if and only if

�.Hi .M
n=S1; Z/C �.Tors Hi�1.M n=S1; Z/ D �

�
�i .M

n/
�

for all i:

Proof. It follows from the exact homotopy sequence of fibration that the manifold M n=S1 is simply-
connected. Let n D 3: Using the results on the three-dimensional Poincaré conjecture [13], one can establish
that M 3 D S3 and M 3=S1 D S2; and we have the Hopf fiber bundle pWS3 ! S2: Therefore, Theorem 4.1 is
proved.

If n D 4; then the free action does not exist on simply-connected manifolds M 4:

Let n � 5: Necessity. Suppose that there is a minimal smooth free circle action on M n: If n � 5; then
it follows from the results of Smale and Barden [3, 10] that the Morse number in dimension i of the manifold
M n=S1 is equal to

Mi .M
n=S1/ D �.Hi

�
M n=S1; Z/

�
C �

�
Tors Hi�1.M n=S1; Z/

�
:

We have Mi .M
n=S1/ DM

eqS1

i .M n/: By virtue of the condition of minimal free circle action, we get

Mi .M
n=S1/ DM

eqS1

i .M n/ DMS1

i .M n/ D �
�
�i .M

n/
�
:
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Sufficiency. On the manifold M n=S1; consider a Morse function with the number of critical points of index i
equal to

Mi .M
n=S1/ D �.Hi .M

n=S1; Z//C �.Tors Hi�1.M n=S1; Z//:

By construction and the condition of the theorem, we have

Mi .M
n=S1/ DM

eqS1

i .M n/ D �.�i .M
n//:

However, MS1

i .M n/ D �
�
�i .M

n/
�
; and, therefore, the free action of S1 is minimal.

Theorem 4.1 is proved.

Corollary 4.3. Suppose that there is a smooth free circle action on a smooth manifold M n: Assume that the
manifold M n=S1 is such that

(a) �1.M
n=S1/ � Z; or �1.M n=S1/ � Z˚ Z; n > 6I

(b) �1.M
n=S1/ is infinite, n > 8:

Then the S1-equivariant Morse number of index i for the manifold M n is equal to

(a) yS i
.2/
.M n=S1/C yS iC1

.2/
.M n=S1/C dimN.ZŒ��/

�
H i
.2/
.M n=S1;Z/

�
I

(b) Di .M n=S1/C yS i
.2/
.M n=S1/C yS iC1

.2/
.M n=S1/C dimN.ZŒ��/

�
H i
.2/
.M n=S1;Z/

�
for 3 < i < n � 3:

Proof. It follows from the results of [4, 14] that, on M n; there are Morse functions with the number of
critical points of index i equal to the Morse number of the manifold M n=S1:

5. Manifolds with Semifree S 1-Action

Let M 2n be a closed smooth manifold with semifree S1-action that has only isolated fixed points. It is
known that every isolated fixed point p of a semifree S1-action has the following important property: near this
point, the action is equivalent to a certain linear S1 D SO.2/-action on R2n: More precisely, for every isolated
fixed point p; there exist an open invariant neighborhood U of p and a diffeomorphism h from U to an open
unit disk D in Cn centered at the origin such that h is conjugate to the given S1-action on U to the S1-
action on Cn with weight .1; : : : ; 1/: We will use both complex coordinates .z1; : : : ; zn/ and real coordinates
.x1; y1; : : : ; xn; yn/ on Cn D R2n with zj D xj C

p
�1yj : The pair .U; h/ is called a standard chart at the

point p: Let f WM 2n ! R be a smooth S1-invariant function on the manifold M 2n: Denote by †f the set of
singular points of the function f: It is clear that the set of isolated singular points †f .pj / � †f of f coincides
with the set of fixed points MS1

:

For a nondegenerate critical point pj ; there exists a standard chart .Uj ; hj / such that, on Uj ; the function
f is given by the following formula:

f D f .p/ � jz1j
2
� : : : � jz�j

j
2
C jz�jC1j

2
C : : :C jznj

2:

Note that the index of a nondegenerate critical point pj is always even.
Denote by †f .S1/ the set of singular points of the function f that are a disconnected union of circles. These

circles will be called singular.
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A circle s 2 †f.S
1/ is called nondegenerate if there is an S1-invariant neighborhood U of s on which

S1 acts freely and such that the point �.s/ is nondegenerate for the function ��.f /WU=S
1 ! R induced on

U=S1 by the natural mapping � WU ! U=S1: An invariant version of the Morse lemma states that there exist an
S1-invariant neighborhood U of the circle s and coordinates .x1; : : : ; x2n�1/ on U=S1 such that the function
��.f / has the following representation:

��.f / D ��
�
f .�

�
s/
��
� x21 � : : : � x

2
� C x

2
�C1 C : : :C x

2
2n�1:

By definition, � is the index of the singular circle s:

Definition 5.1. A smooth S1-invariant function f WM 2n ! R on a manifold M 2n with semifree circle
action that has isolated fixed points is called an S1� -Bott function if every connected component of the singular set
†f is either a nondegenerate fixed point or a nondegenerate critical circle.

Theorem 5.1. Assume that M 2n is a closed manifold with smooth semifree circle action that has isolated
fixed points p1; : : : ; pk : For any fixed point pj ; consider a standard chart .Uj ; hj / and the function

fj D fj .pi / � jz1j
2
� : : : � jz�j

j
2
C jz�jC1j

2
C : : :C jznj

2

on Uj ; where �j is an arbitrary integer from 0; 1; : : : ; n:

Then there exists an S1-invariant S1� -Bott function f on M 2n such that f D fj on Uj :

Proof. Consider the function fj on Uj : Let ��.fj /WUj =S1 ! R be a continuous function induced on
Uj =S

1 by the natural mapping � WUj ! Uj =S
1: It is clear that the function ��.fj / is smooth on the manifold

.Uj n pj /=S
1: Denote by g the smooth extension of the functions ��.fj / to M 2n=S1: By a small deformation

of the function g; which is fixed on Uj =S1; we find a function g1 on M 2n=S1 such that g1 is equal to ��.fj /
on Uj =S1 and g1 has only nondegenerate critical points on M 2n n

S
.Uj =S

1/: Then the function f D g1 ı p
satisfies the conditions of the theorem.

Theorem 5.2. The number of fixed points of any smooth semifree circle action on M 2n with isolated fixed
points is always even and equal to the Euler characteristic of the manifold M 2n:

Proof. First, we consider the functions

f1 D f1.p1/C jz1j
2
C : : :C jznj

2 on U1 and fj D fj .pi / � jz1j
2
� : : : � jznj

2 on Uj ; 2 � j � l

and extend them to an S1-invariant Bott function f on the manifold M 2nnU1
S
U2
S
: : :
S
Ul : We assume that

Uj is diffeomorphic to the open disk D2n for any j: Consider the manifold V 2n D W 2nn
S
Uj : The boundary of

the manifold V 2n is the disconnected union of spheres S2n�1: By the construction of the manifold V 2n; there is
a free circle action. The boundary of the manifold V 2n=S1 is the disconnected union of complex projective spaces
CPn�1: If the number of boundary components of the manifold V 2n=S1 is odd, then we glue the boundary
components pairwise and obtain a compact smooth manifold with boundary CPn�1: The well-known fact that
the manifold CPn�1 is noncobordant to zero implies that the number of fixed points of any smooth semifree circle
action on M 2n with isolated fixed points is even. The value of the Euler characteristic �.M 2n/ D 2k follows
from Lemma 3.4.
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Definition 5.2. Let f be an S1-invariant S1� -Bott function for a smooth semifree circle action with isolated
fixed points p1; : : : ; p2k on a closed manifold M 2n: Denote by �j the index of a critical point pj of the
function f: The state of the function f is defined as the collection of numbers ƒ D .�1; �2; : : : ; �2k/ and is
denoted by Stf .ƒ/ . It is clear that all numbers �j are even and 0 � �j � 2n:

Remark 5.1. It follows from Theorem 5.1 that, for every smooth semifree circle action on a closed manifold
M 2n with isolated fixed points p1; : : : ; p2k and any collection of even numbers ƒ D .�1; �2; : : : ; �2k/ such
that 0 � �j � 2n; there exists an S1-invariant S1� -Bott function f on M 2n with state Stf .ƒ/:

Definition 5.3. Let M 2n be a closed smooth manifold with smooth semifree circle action that has finitely
many fixed points p1; : : : ; p2k : Fix any collection of even numbers ƒ D .�1; �2; : : : ; �2k/ such that 0 �
�j � 2n:

The S1-Morse number MS1

i

�
M 2n; St.ƒ/

�
of index i is the minimum number of singular circles of index i

taken over all S1-invariant S1� -Bott functions f on M 2n with state Stf .ƒ/:

The following is an unsolved problem: For a manifold M 2n with a semifree circle action that has finitely
many fixed points, find the exact values of the numbers MS1

i

�
M 2n; St.ƒ/

�
:

6. On S 1-Equivariant Morse Numbers MS 1

i

�
M2n; St.ƒ/

�
Let M 2n be a compact closed manifold with semifree circle action that has finitely many fixed points

p1; : : : ; p2k : Denote the canonical map by � WM 2n ! M 2n=S1: The set M 2n=S1 is a manifold with sin-
gular points �.p1/; : : : ; �.p2k/: It is clear that the neighborhood of any singular point is a cone over CPn�1: If
f WM 2n ! R is a smooth S1-invariant S1� -Bott function on the manifold M 2n; then ��.f /WM 2n=S1 ! R is
a continuous function that is a Morse function on the smooth noncompact manifold

N 2n�1
DM 2n=S1 n

2k[
jD1

�.pj /:

We choose an invariant neighborhood Ui of the point pj diffeomorphic to the open unit disk D2n � Cn

and set

U D

2k[
jD1

Uj :

Consider the compact manifold V 2n�1 D .M 2n n U/=S1: Its boundary is a disconnected union of complex
projective spaces:

@V 2n�1 D CPn�11 [ : : : [CPn�12k :

It is clear that the manifolds V 2n�1n@V 2n�1 and N 2n�1 are diffeomorphic. We use the manifold V 2n�1 for the
investigation of S1-invariant S1� -Bott functions on the manifold M 2n with state St.ƒ/ D .0; : : : ; 0; 2n; : : : ; 2n/:
Let @0V 2n�1 be the part of the boundary of V 2n�1 that consists of r components CP 2n�2; 2k � 1 � r � 1;
and let @1V 2n�1 D @V 2n�1 n @0V 2n�1: On the manifold with boundary V 2n�1; we construct a Morse function
f WV ! Œ0; 1� such that f �1.0/ D @0V

2n�1 and f �1.1/ D @1V
2n: Using the function f; on the manifold

M 2n we construct an S1-equivariant S1� -Bott function F with state St.0; : : : ; 0; 2n; : : : ; 2n/ such that the re-
striction of ��.F / to V coincides with f: Therefore, the Morse number Mi .V

2n�1; @0V
2n�1/ of index i for

the manifold with boundary V 2n�1 is equal to MS1

i .M
2n; St.0; : : : ; 0; 2n; : : : ; 2n/:
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Theorem 6.1. Let M 2n .2n > 8/ be a closed smooth manifold that admits a smooth semifree circle action
with isolated fixed points p1; : : : ; p2k : Then, for the manifold M 2n with state St.ƒ/ D .0; : : : ; 0; 2n; : : : ; 2n/;

one has

MS1

i .M
2n; St.ƒ/ D Di .V 2n�1; @0V

2n�1/C yS i.2/.V
2n�1; @0V

2n�1/C yS iC1
.2/

.V 2n�1; @0V
2n�1/

C dimN.ZŒ��/
�
H i
.2/.V

2n�1; @0V
2n�1/

�
for 3 � i � 2n � 4:

Proof. We choose an invariant neighborhood Ui of the point pi diffeomorphic to the unit disk D2n � Cn

and set U D
S
i Ui : Let fi be the function on Ui equal to

fi D jz1j
2
C : : :C jznj

2

and let fj be the function on Uj equal to

fj D 1 � jz1j
2
� : : : � jznj

2

for i D 1; : : : ; r and j D r C 1; : : : ; 2k � r: Consider the manifold V 2n D .M 2n n U/=S1: It is clear that its
boundary is a disconnected union of complex projective spaces:

@V 2n D CP 2n�21 [ : : : [CP 2n�22k :

Let @0V 2n be the part of the boundary of V 2n that consists of r components CP 2n�2 that correspond to
Ui and let @1V 2n be the part of the boundary that consists of the component CP 2n�2 that corresponds to Uj : On
the manifold V 2n D .M 2n n U/=S1; we construct a Morse function f WV ! Œ0; 1� such that f �1.0/ D @0V 2n

and f �1.1/ D @1V
2n: Using the function f; on the manifold M 2n we construct an S1-equivariant S1� -Bott

function F with state St.ƒ/ D .0; : : : ; 0; 2n; : : : ; 2n/ such that the restriction of F to Ui coincides with fi ;

the restriction of F to Uj coincides with fj ; and the restriction of ��.F / to V coincides with f: Therefore,
the Morse number of the cobordism V is equal to M�

S1

�
M 2n; St.ƒ/

�
: The value of the Morse number of a

cobordism is given in [14].
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