Max-min measures on ultrametric spaces

Matija Cencelj ${ }^{\text {a }}$, Dušan Repovš ${ }^{\text {a,b,* }}$, Michael Zarichnyi ${ }^{\text {c,d }}$
${ }^{\text {a }}$ Faculty of Education, University of Ljubljana, Kardeljeva pl. 16, Ljubljana, 1000, Slovenia
${ }^{\mathrm{b}}$ Faculty of Mathematics and Physics, University of Ljubljana, Kardeljeva pl. 16, Ljubljana, 1000, Slovenia
${ }^{\text {c }}$ Department of Mechanics and Mathematics, Lviv National University, Universytetska Str. 1, 79000 Lviv, Ukraine
${ }^{\text {d }}$ Institute of Mathematics, University of Rzeszów, Rejtana 16 A, 35-310 Rzeszów, Poland

ARTICLE INFO

Article history:

Received 2 October 2012
Accepted 16 January 2013

MSC:

32P05
54B30
60B05

Keywords:

Max-min measure
Ultrametric space
Probability measure
Idempotent mathematics
Dirac measure
Ultrametric

Abstract

Ultrametrization of the set of all probability measures of compact support on the ultrametric spaces was first defined by Hartog and de Vink. In this paper we consider a similar construction for the so-called max-min measures on the ultrametric spaces. In particular, we prove that the functors of max-min measures and idempotent measures are isomorphic. However, we show that this is not the case for the monads generated by these functors.

© 2013 Elsevier B.V. All rights reserved.
\qquad

1. Introduction

Ultrametric spaces naturally appear not only in different parts of mathematics, in particular, in real-valued analysis, number theory and general topology, but also have applications in biology, physics, theoretical computer science, etc. (see e.g. [6,11,14]).

Probability measures of compact support on ultrametric spaces were investigated by different authors. In particular, Hartog and de Vink [6] defined an ultrametric on the set of all such measures. The properties of the obtained construction were established in [7] and [14].

The aim of this paper is to find analogs of these results for other classes of measures. We define the so-called maxmin measures, which play a similar role to that of probability measures in the idempotent mathematics, i.e., the part of mathematics which is obtained by replacing the usual arithmetic operations by idempotent operations (see $[8,10]$). The methods and results of idempotent mathematics have found numerous applications [1,2,4].

Note that max-min measures are non-additive. The class of non-additive measures has numerous applications, in particular, in mathematical economics, multicriteria decision making, image processing (see, e.g., [5]).

In the case of max-min measures, we start with such measures of finite supports; the general case (max-min measures of compact supports) is obtained by passing to the completions.

[^0]One of our results shows that functors of max-min measures and idempotent measures in the category of ultrametric spaces and nonexpanding maps are isomorphic. However, we show that monads generated by these functors are not isomorphic.

2. Preliminaries

2.1. Max-min measures

By $\overline{\mathbb{R}}$ we denote the extended real line, $\overline{\mathbb{R}}=\mathbb{R} \cup\{-\infty, \infty\}$. Let \wedge and \vee denote the operations max and min in $\overline{\mathbb{R}}$, respectively. Following the traditions of idempotent mathematics we denote by \odot the addition (convention $-\infty \odot x=x$ for all $x \in \overline{\mathbb{R}}, x<\infty)$.

Let X be a topological space. As usual, by $C(X)$ we denote the linear space of (real-valued) continuous functions on X. The set $C(X)$ is a lattice with respect to the pointwise maximum and minimum and we preserve the notation \wedge and \vee for these operations.

Given $x \in X$, by δ_{x} we denote the Dirac measure in X concentrated at x. Given $x_{i} \in X$ and $\alpha_{i} \in \overline{\mathbb{R}}, i=1, \ldots, n$, such that $\bigwedge_{i=1}^{n} \alpha_{i}=\infty$, we denote by $\bigvee_{i=1}^{n} \alpha_{i} \wedge \delta_{x_{i}}$ the functional on $C(X)$ defined as follows:

$$
\bigvee_{i=1}^{n} \alpha_{i} \wedge \delta_{x_{i}}(\varphi)=\bigvee_{i=1}^{n} \alpha_{i} \wedge \varphi\left(x_{i}\right)
$$

Let us denote by $J_{\omega}(X)$ the set of all such functionals. We call the elements of $J_{\omega}(X)$ the max-min measures of finite support on X. The term 'measure' means nothing but the fact that $\mu=\bigvee_{i=1}^{n} \alpha_{i} \wedge \delta_{x_{i}} \in J_{\omega}(X)$ can also be interpreted as a set function with values in the extended real line: $\mu(A)=\bigvee\left\{\alpha_{i} \mid x_{i} \in A\right\}$, for any $A \subset X$.

The support of $\mu=\bigvee_{i=1}^{n} \alpha_{i} \wedge \delta_{x_{i}} \in J_{\omega}(X)$ is the set

$$
\operatorname{supp}(\mu)=\left\{x_{i} \mid i=1, \ldots, n, \alpha_{i}>-\infty\right\} \subset X
$$

For any map $f: X \rightarrow Y$ of topological spaces, define the map $J_{\omega}(f): J_{\omega}(X) \rightarrow J_{\omega}(Y)$ by the formula:

$$
J_{\omega}(f)\left(\bigvee_{i=1}^{n} \alpha_{i} \wedge \delta_{x_{i}}\right)=\bigvee_{i=1}^{n} \alpha_{i} \wedge \delta_{f\left(x_{i}\right)}
$$

Let us recall that $I_{\omega}(X)$ denotes the set of functionals of the form $\bigvee_{i} \alpha_{i} \odot \delta_{x_{i}}$, where $\alpha_{i} \in \overline{\mathbb{R}}$ and $\bigvee_{i} \alpha_{i}=0$. If $\varphi \in C(X)$, then $\left(\bigvee_{i} \alpha_{i} \odot \delta_{x_{i}}\right)(\varphi)=\bigvee_{i} \alpha_{i} \odot \varphi\left(x_{i}\right)$. See e.g. [15], for the theory of spaces $I_{\omega}(X)$ (called spaces of idempotent measures of finite support) as well as related spaces $I(X)$ (called spaces of idempotent measures of compact support). Recall that the support of $\mu=\bigvee_{i=1}^{n} \alpha_{i} \odot \delta_{x_{i}} \in I_{\omega}(X)$ is the set

$$
\operatorname{supp}(\mu)=\left\{x_{i} \mid i=1, \ldots, n, \alpha_{i}>-\infty\right\} \subset X
$$

Remark 2.1. We adopt the following conventions: $+\infty \wedge \delta_{x}=\delta_{X}$ in $J_{\omega}(X)$ and $0 \odot \delta_{X}=\delta_{x}$ in $I_{\omega}(X)$.

2.2. Ultrametric spaces

Recall that a metric d on a set X is said to be an ultrametric if the following strong triangle inequality holds:

$$
d(x, y) \leqslant \max \{d(x, z), d(z, y)\}
$$

for all $x, y, z \in X$.
By $O_{r}(A)$ we denote the r-neighborhood of a set A in a metric space. We write $O_{r}(x)$ if $A=\{x\}$. It is well known that in ultrametric spaces, for any $r>0$, every two distinct elements of the family $\mathcal{O}_{r}=\left\{O_{r}(x) \mid x \in X\right\}$ are disjoint. We denote by \mathcal{F}_{r} the set of all functions on X that are constant on the elements of the family \mathcal{O}_{r}. By $q_{r}: X \rightarrow X / \mathcal{O}_{r}$ we denote the quotient map. We endow the set X / \mathcal{O}_{r} with the quotient metric, d_{r}. It is easy to see that $d_{r}\left(O_{r}(x), O_{r}(y)\right)=d(x, y)$, for any disjoint $O_{r}(x), O_{r}(y)$, and the obtained metric is an ultrametric.

Recall that a map $f: X \rightarrow Y$, where (X, d) and (Y, ϱ) are metric spaces, is called nonexpanding if $\varrho(f(x), f(y)) \leqslant d(x, y)$, for every $x, y \in X$. Note that the quotient map $q_{r}: X \rightarrow X / \mathcal{O}_{r}$ is nonexpanding.

2.3. Hyperspaces and symmetric powers

By $\exp X$ we denote the set of all nonempty compact subsets in X endowed with the Hausdorff metric:

$$
d_{H}(A, B)=\inf \left\{\varepsilon>0 \mid A \subset O_{\varepsilon}(B), B \subset O_{\varepsilon}(A)\right\}
$$

We say that $\exp X$ is the hyperspace of X. For a continuous map $f: X \rightarrow Y$ the map $\exp f: \exp X \rightarrow \exp Y$ is defined as $(\exp f)(A)=f(A)$.

It is well known that $\exp f$ is a nonexpanding map if so is f. We denote by $s_{X}: X \rightarrow \exp X$ the singleton map, $s_{X}(x)=\{x\}$.
By S_{n} we denote the group of permutations of the set $\{1,2, \ldots, n\}$. Every subgroup G of the group S_{n} acts on the n-th power X^{n} of the space X by the permutation of factors. Let $S P_{G}^{n}(X)$ denote the orbit space of this action. By $\left[x_{1}, \ldots, x_{n}\right]$ (or briefly $\left[x_{i}\right]$) we denote the orbit containing $\left(x_{1}, \ldots, x_{n}\right) \in X^{n}$.

If (X, d) is a metric space, then $S P_{G}^{n}(X)$ is endowed with the following metric \tilde{d},

$$
\tilde{d}\left(\left[x_{i}\right],\left[y_{i}\right]\right)=\min \left\{\max \left\{d\left(x_{i}, y_{\sigma(i)}\right) \mid i=1, \ldots, n\right\} \mid \sigma \in G\right\} .
$$

It is well known that the space $\left(S P_{G}^{n}(X), \tilde{d}\right)$ is ultrametric if such is also (X, d).
Define the map $\pi_{G}=\pi_{G X}: X^{n} \rightarrow S P_{G}^{n}(X)$ by the formula $\pi_{G}\left(x_{1}, \ldots, x_{n}\right)=\left[x_{1}, \ldots, x_{n}\right]$. It was shown in [7] (and it is easy to see) that the map π_{G} is nonexpanding.

2.4. Monads

We recall some necessary definitions from category theory; see, e.g., $[3,9]$ for details. A monad $\mathbb{T}=(T, \eta, \mu)$ in the category \mathcal{E} consists of an endofunctor $T: \mathcal{E} \rightarrow \mathcal{E}$ and natural transformations $\eta: 1_{\mathcal{E}} \rightarrow T$ (unity), $\mu: T^{2}=T \circ T \rightarrow T$ (multiplication) satisfying the relations $\mu \circ T \eta=\mu \circ \eta T=\mathbf{1}_{T}$ and $\mu \circ \mu T=\mu \circ T \mu$.

Given two monads, $\mathbb{T}=(T, \eta, \mu)$ and $\mathbb{T}^{\prime}=\left(T^{\prime}, \eta^{\prime}, \mu^{\prime}\right)$, we say that a natural transformation $\alpha: T \rightarrow T^{\prime}$ is a morphism of \mathbb{T} into \mathbb{T}^{\prime} if $\alpha \eta=\eta^{\prime}$ and $\mu^{\prime} \alpha_{T} T(\alpha)=\alpha \mu$.

We denote by UMET the category of ultrametric spaces and nonexpanding maps. One of examples of monads on the category UMET is the hyperspace monad $\mathbb{H}=(\exp , s, u)$. The singleton map $s_{X}: X \rightarrow \exp X$ is already defined and the map $u_{X}: \exp ^{2} X \rightarrow \exp X$ is the union map, $u_{X}(\mathcal{A})=\bigcup \mathcal{A}$.

It is well known (and easy to prove) that the max-metric on the finite product of ultrametric spaces is an ultrametric. We will always endow the product with this ultrametric.

The Kleisli category of a monad \mathbb{T} is a category $\mathcal{C}_{\mathbb{T}}$ defined by the conditions: $\left|\mathcal{C}_{\mathbb{T}}\right|=|\mathcal{C}|, \mathcal{C}_{\mathbb{T}}(X, Y)=\mathcal{C}(X, T(Y))$, and the composition $g * f$ of morphisms $f \in \mathcal{C}_{\mathbb{T}}(X, Y), g \in \mathcal{C}_{\mathbb{T}}(Y, Z)$ is given by the formula $g * f=\mu Z T(g) f$.

Define the functor $\Phi_{\mathbb{T}}: \mathcal{C} \rightarrow \mathcal{C}_{\mathbb{T}}$ by

$$
\Phi_{\mathbb{T}}(X)=X, \quad \Phi_{\mathbb{T}}(f)=\eta_{Y} f, \quad X \in|\mathcal{C}|, f \in \mathcal{C}(X, Y)
$$

A functor $\bar{F}: \mathcal{C}_{\mathbb{T}} \rightarrow \mathcal{C}_{\mathbb{T}}$ is called an extension of the functor $F: \mathcal{C} \rightarrow \mathcal{C}$ on the Kleisli category $\mathcal{C}_{\mathbb{T}}$ if $\Phi_{\mathbb{T}} F=\bar{F} \Phi_{\mathbb{T}}$.
The proof of the following theorem can be found in [13].
Theorem 2.2. There exists a bijective correspondence between the extensions of functor F onto the Kleisli category $\mathcal{C}_{\mathbb{T}}$ of a monad \mathbb{T} and the natural transformations $\xi: F T \rightarrow T F$ satisfying
(1) $\xi F(\eta)=\eta_{F}$;
(2) $\mu_{F} T(\xi) \xi_{T}=\xi F(\mu)$.

3. Ultrametric on the set of max-min measures

Let (X, d) be an ultrametric space. For any $\mu, v \in J_{\omega}(X)$, let

$$
\hat{d}(\mu, \nu)=\inf \{r>0 \mid \mu(\varphi)=v(\varphi), \text { for any } \varphi \in C(X)\}
$$

Since μ, v are of finite support, it is easy to see that \hat{d} is well defined.

Theorem 3.1. The function \hat{d} is an ultrametric on the set $J_{\omega}(X)$.
Proof. We only have to check the strong triangle inequality. Suppose that $\mu, \nu, \tau \in J_{\omega}(X)$ and $\hat{d}(\mu, \tau)<r, \hat{d}(\nu, \tau)<r$. Then, for every $\varphi \in \mathcal{F}_{r}$, we have $\mu(\varphi)=\tau(\varphi)=v(\varphi)$, whence $\hat{d}(\mu, \nu)<r$.

Proposition 3.2. The map $x \mapsto \delta_{x}: X \rightarrow J_{\omega}(X)$ is an isometric embedding.
Proof. Let $x, y \in X$ and $d(x, y)<r$. Then for every $\varphi \in \mathcal{F}_{r}(X)$, we have $\delta_{x}(\varphi)=\varphi(x)=\varphi(y)=\delta_{y}(\varphi)$, whence $\hat{d}\left(\delta_{x}, \delta_{y}\right)<r$. Therefore, $\hat{d}\left(\delta_{x} \delta_{y}\right) \leqslant d(x, y)$. The proof of the reverse inequality is simple as well.

Proposition 3.3. Let $f: X \rightarrow Y$ be a nonexpanding map of an ultrametric space (X, d) into an ultrametric space (Y, ϱ). Then the induced map $J_{\omega}(f)$ is also nonexpanding.

Proof. Since the map f is nonexpanding, $\varphi f \in \mathcal{F}_{r}(X)$, for any $\varphi \in \mathcal{F}_{r}(Y)$.
If $\mu, \nu \in J_{\omega}(X)$ and $\hat{d}(\mu, v)<r$, then, for every $\varphi \in \mathcal{F}_{r}(Y)$, we have

$$
J_{\omega}(f)(\mu)(\varphi)=\mu(\varphi f)=\nu(\varphi f)=J_{\omega}(f)=J_{\omega}(f)(\nu)(\varphi)
$$

and therefore $\hat{\varrho}\left(J_{\omega}(f)(\mu), J_{\omega}(f)(\nu)\right)<r$.
We therefore obtain a functor J_{ω} on the category UMET.
Proposition 3.4. If $\mu, v \in J_{\omega}(X)$, then the following are equivalent:
(1) $\hat{d}(\mu, v)<r$;
(2) $J_{\omega}\left(q_{r}\right)(\mu)=J_{\omega}\left(q_{r}\right)(\nu)$.

Proof. (1) \Rightarrow (2). For every $\varphi: X / \mathcal{O}_{r} \rightarrow \mathbb{R}$ we have $\varphi q_{r} \in \mathcal{F}_{r}$ and therefore

$$
J_{\omega}\left(q_{r}\right)(\mu)=\mu\left(\varphi q_{r}\right)=v\left(\varphi q_{r}\right)=J_{\omega}\left(q_{r}\right)(v)
$$

Thus, $J_{\omega}\left(q_{r}\right)(\mu)=J_{\omega}\left(q_{r}\right)(\nu)$.
(2) $\Rightarrow(1)$. Let $\varphi \in \mathcal{F}_{r}$, then φ factors through q_{r}, i.e. there exists $\psi: X \rightarrow \mathbb{R}$ such that $\varphi=\psi q_{r}$. Then

$$
\mu(\varphi)=\mu\left(\psi q_{r}\right)=J_{\omega}\left(q_{r}\right)(\mu)(\varphi)=J_{\omega}\left(q_{r}\right)(\nu)(\varphi)=\nu\left(\psi q_{r}\right)=v(\varphi)
$$

Thus, $\hat{d}(\mu, v)<r$.
In the sequel, given a metric space (X, d), we denote also by d the (extended, i.e. taking values in $[0, \infty]$) metric on the set of maps from a nonempty set Y into X defined by the formula: $d(f, g)=\sup \{d(f(x), g(x)) \mid x \in X\}$.

Proposition 3.5. The functor J_{ω} is locally non-expansive, i.e., for every nonexpanding maps f, g of an ultrametric space (X, d) into an ultrametric space (Y, ϱ) we have $\varrho\left(J_{\omega}(f), J_{\omega}(g)\right) \leqslant \varrho(f, g)$.

Proof. If $\varrho(f, g)=\infty$, then there is nothing to prove. Suppose that $\varrho(f, g)<r<\infty$. Then $q_{r} f=q_{r} g$, where $q_{r}: Y \rightarrow$ $Y / \mathcal{O}_{r}(Y)$ is the quotient map. For every $\mu \in J_{\omega}(X)$, we obtain

$$
J_{\omega}\left(q_{r}\right) J_{\omega}(f)(\mu)=J_{\omega}\left(q_{r} f\right)(\mu)=J_{\omega}\left(q_{r} g\right)(\mu) J_{\omega}\left(q_{r}\right) J_{\omega}(g)(\mu)
$$

and by Proposition 3.4, $\hat{\varrho}\left(J_{\omega}(f)(\mu), J_{\omega}(g)(\mu)\right)<r$.

4. Categorical properties

Let (X, d) be an ultrametric space. Given a function $\varphi \in C(X)$, define $\bar{\varphi}: J_{\omega}(X) \rightarrow \mathbb{R}$ as follows: $\bar{\varphi}(\mu)=\mu(\varphi)$.
Proposition 4.1. If $\varphi \in \mathcal{F}_{r}(X)$, then $\bar{\varphi} \in \mathcal{F}_{r}\left(J_{\omega}(X)\right)$.
Proof. Given $\mu, \nu \in J_{\omega}(X)$ with $\hat{d}(\mu, \nu)<r$, we see that $\bar{\varphi}(\mu)=\mu(\varphi)=\nu(\varphi)=\bar{\varphi}(\nu)$, whence $\bar{\varphi} \in \mathcal{F}_{r}\left(J_{\omega}(X)\right)$.
Let $M \in J_{\omega}^{2}(X)$. Define $\xi_{X}(M)$ by the condition $\xi_{X}(M)(\varphi)=M(\bar{\varphi})$, for any $\varphi \in C(X)$. If $M=\bigvee_{i} \alpha_{i} \wedge \delta_{\mu_{i}}$ and $\mu_{i}=\bigvee_{j} \beta_{i j} \wedge$ $\delta_{x_{i j}}$, then

$$
\xi_{X}(M)=\bigvee_{i} \bigvee_{j} \alpha_{i} \wedge \beta_{i j} \wedge \delta_{x_{i j}}
$$

Proposition 4.2. The map ξ_{X} is nonexpanding.
Proof. Let denote the ultrametric on X, then \hat{d} and $\hat{\hat{d}}$ denote the ultrametrics on $J_{\omega}(X)$ and $J_{\omega}^{2}(X)$ respectively. Let $M, N \in J_{\omega}^{2}(X)$ and $\hat{d}(M, N)<r$, for some $r>0$. Then, for every $\varphi \in \mathcal{F}(X)$ we obtain

$$
\xi_{X}(M)(\varphi)=M(\bar{\varphi})=N(\bar{\varphi})=\xi_{X}(N)(\varphi)
$$

and therefore $\hat{d}\left(\xi_{X}(M), \xi_{X}(N)\right)<r$.
It is easy to verify that the maps ξ_{X} give rise to a natural transformation of the functor J_{ω}^{2} to the functor J_{ω} in the category UMET.

Theorem 4.3. The triple $\mathbb{J}_{\omega}=\left(J_{\omega}, \delta, \xi\right)$ is a monad in the category UMET.
Proof. Let $\mu=\bigvee_{i} \alpha_{i} \wedge \delta_{x_{i}} \in J_{\omega}(X)$. Then

$$
\xi_{X} J_{\omega}\left(\delta_{X}\right)(\mu)=\xi_{X}\left(\bigvee_{i} \alpha_{i} \wedge \delta_{\delta_{x_{i}}}\right)=\bigvee_{i} \alpha_{i} \wedge \delta_{x_{i}}=\mu
$$

and $\xi_{X} \delta_{J_{\omega}(X)}(\mu)=\xi_{X}\left(\delta_{\mu}\right)=\mu$. Therefore $\xi J_{\omega}(\delta)=1_{J_{\omega}}=\xi \delta_{J_{\omega}}$.
Let $\mathfrak{M}=\bigvee_{i} \alpha_{i} \wedge \delta_{M_{i}} \in J_{\omega}^{3}(X)$, where $M_{i}=\bigvee_{j} \beta_{i j} \wedge \delta_{\mu_{i j}}$. Then

$$
\begin{align*}
\xi_{X} J_{\omega}\left(\xi_{X}\right)(\mathfrak{M}) & =\xi_{X}\left(\bigvee_{i} \alpha_{i} \wedge \delta_{\xi_{X}\left(M_{i}\right)}\right)=\xi_{X}\left(\bigvee_{i} \alpha_{i} \wedge \delta_{\bigvee_{j} \beta_{i j} \wedge \mu_{i j}}\right)=\bigvee_{i} \bigvee_{j} \alpha_{i} \wedge \beta_{i j} \wedge \mu_{i j} \\
& =\bigvee_{i} \alpha_{i} \wedge\left(\bigvee_{j} \beta_{i j} \wedge \delta_{\mu_{i j}}\right)=\xi_{X}\left(\bigvee_{i} \alpha_{i} \wedge M_{i}\right)=\xi_{X} \xi_{J_{\omega}(X)}(\mathfrak{M}) \tag{M}
\end{align*}
$$

and therefore $\xi J_{\omega}(\xi)=\xi \xi_{J_{\omega}}$.
Proposition 4.4. The spaces $I_{\omega}(X)$ and $J_{\omega}(X)$ are isometric.
Proof. Define a map $h=h_{X}: I_{\omega}(X) \rightarrow J_{\omega}(X)$ as follows. Let $\mu=\bigvee_{i} \alpha_{i} \odot \delta_{x_{i}} \in I_{\omega}(X)$. Define $h(\mu)=\bigvee_{i}-\ln \left(-\alpha_{i}\right) \wedge \delta_{x_{i}} \in$ $J_{\omega}(X)$.

Suppose that $\hat{d}(\mu, v)<r$, where $v=\bigvee_{j} \beta_{j} \odot \delta_{y_{j}} \in I_{\omega}(X)$. For every $x \in X$ and $t \leqslant 0$, define $\varphi_{t}^{x}: X \rightarrow \mathbb{R}$ by the conditions: $\varphi_{t}^{x}(y)=0$ if $y \in B_{r}(x)$ and $\varphi_{t}^{x}(y)=t$ otherwise.

Then

$$
\max _{x_{i} \in B_{r}(x)} \alpha_{i}=\lim _{i \rightarrow-\infty} \mu\left(\varphi_{t}^{x}\right)=\lim _{i \rightarrow-\infty} v\left(\varphi_{t}^{x}\right)=\max _{y_{j} \in B_{r}(x)} \beta_{j} .
$$

If $\varphi \in \mathcal{F}_{r}$, then

$$
\mu(\varphi)=\bigvee_{i} \alpha_{i} \odot \varphi\left(x_{i}\right)=\bigvee_{x \in X x_{i} \in B_{r}(x)} \bigvee_{i} \odot \varphi\left(x_{i}\right)=\bigvee_{x \in X} \bigvee_{y_{j} \in B_{r}(x)} \beta_{j} \odot \varphi\left(y_{j}\right)
$$

and therefore

$$
h(\mu)(\varphi)=\bigvee_{i}-\ln \left(-\alpha_{i}\right) \wedge \varphi\left(x_{i}\right)=\bigvee_{x \in X} \bigvee_{x_{i} \in B_{r}(x)}-\ln \left(-\alpha_{i}\right) \wedge \varphi\left(x_{i}\right)=\bigvee_{x \in X} \bigvee_{y_{j} \in B_{r}(x)}-\ln \left(-\beta_{j}\right) \wedge \varphi\left(y_{j}\right)=h(\nu)(\varphi)
$$

Thus, $\hat{d}(h(\mu), h(\nu))<r$ and we see that the map h is nonexpanding. One can similarly prove that the inverse map h^{-1} is also nonexpanding.

Proposition 4.5. The class $\left\{h_{X}\right\}$ is a natural transformation of the functor I_{ω} to the functor J_{ω}.
Proof. Let $f: X \rightarrow Y$ be a map and $\mu=\bigvee_{i} \alpha_{i} \odot \delta_{x_{i}} \in I_{\omega}(X)$. Then

$$
J_{\omega}(f) h_{X}(\mu)=J_{\omega}(f)\left(\bigvee_{i}-\ln \left(-\alpha_{i}\right) \wedge \delta_{x_{i}}\right)=\bigvee_{i}-\ln \left(-\alpha_{i}\right) \wedge \delta_{f\left(x_{i}\right)}=h_{Y}\left(\bigvee_{i} \alpha_{i} \odot \delta_{f\left(x_{i}\right)}\right)=h_{Y} I_{\omega}(f)(\mu)
$$

Corollary 4.6. The functors I_{ω} and J_{ω} are isomorphic.
Remark 4.7. Let $\alpha:[-\infty, 0] \rightarrow[-\infty, \infty]$ be an order-preserving bijection. Then the maps $g_{X}^{\alpha}: I_{\omega}(X) \rightarrow J_{\omega}(X)$ defined by the formula $g_{X}^{\alpha}\left(\bigvee_{i} t_{i} \odot \delta_{x_{i}}\right)=\bigvee_{i} \alpha\left(t_{i}\right) \wedge \delta_{x_{i}}$, determines an isomorphism of the functors I_{ω} and J_{ω}.

Proposition 4.8. Every isomorphism of the functors I_{ω} and J_{ω} is of the form g^{α} (see Remark 4.7), for some order-preserving bijection $\alpha:[-\infty, 0] \rightarrow[-\infty, \infty]$.

Proof. Let $k: I_{\omega} \rightarrow J_{\omega}$ be an isomorphism. Let $X=\{x, y, z\}$, where x, y, z are distinct points. Since the functor isomorphisms preserve the supports, we obtain

$$
k_{X}\left(t \odot \delta_{x} \vee t \odot \delta_{y} \vee \delta_{z}\right)=\alpha(t) \wedge \delta_{x} \vee \alpha(t) \wedge \delta_{y} \vee \beta(t) \wedge \delta_{z},
$$

where $\alpha(t) \vee \beta(t)=+\infty$.

We are going to show that $\beta(t)=+\infty$, for every $t \in[-\infty, 0]$. First note that $k_{X}\left(\delta_{x} \vee \delta_{y} \vee \delta_{z}\right)=\delta_{x} \vee \delta_{y} \vee \delta_{z}$. Suppose that, for some $t \in(-\infty, 0)$, we have $\beta(t)<+\infty$. Denote by $r: X \rightarrow\{y, z\}$ the retraction that sends x to z. Then, since in this case $\alpha(t)=+\infty$, we obtain

$$
k_{\{y, z\}}\left(I_{\omega}(r)\left(t \odot \delta_{x} \vee t \odot \delta_{y} \vee \delta_{z}\right)\right)=k_{\{y, z\}}\left(t \odot \delta_{y} \vee \delta_{z}\right)=\delta_{y} \vee \delta_{z}
$$

which is impossible, because the natural transformations preserve the symmetry with respect to the nontrivial permutation of $\{y, z\}$.

Thus,

$$
k_{X}\left(t \odot \delta_{x} \vee t \odot \delta_{y} \vee \delta_{z}\right)=\alpha(t) \wedge \delta_{x} \vee \alpha(t) \wedge \delta_{y} \vee \delta_{z}
$$

and identifying the points x and y we conclude that $k_{\{y, z\}}\left(t \odot \delta_{y} \vee \delta_{z}\right)=\left(\alpha(t) \wedge \delta_{y} \vee \delta_{z}\right)$. We see therefore that $k=g^{\alpha}$.
It is clear that α is a bijection of $[-\infty, 0]$ onto $[-\infty, \infty]$. Suppose now that $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, where $x_{1}, x_{2}, \ldots, x_{n}$ are distinct points. Let $\mu=\bigvee_{i=1}^{n} t_{i} \odot \delta_{x_{i}}$ be such that $t_{1}=0$. Given $i>1$, consider a retraction $r_{i}: X \rightarrow\left\{x_{1}, x_{i}\right\}$ that sends every $x_{j}, j \neq i$, to x_{1}. Then, by what was proved above,

$$
k_{\left\{x_{1}, x_{i}\right\}} I_{\omega}\left(r_{i}\right)(\mu)=k_{\left\{x_{1}, x_{i}\right\}}\left(\delta_{x_{1}} \vee t_{i} \odot \delta_{x_{1}}\right)=\delta_{x_{1}} \vee \alpha\left(t_{i}\right) \wedge \delta_{x_{1}}=J_{\omega}\left(r_{i}\right)\left(k_{X}(\mu)\right)
$$

and collecting the data for all $i>1$ we conclude that $k_{X}(\mu)=\bigvee_{i=1}^{n} \alpha\left(t_{i}\right) \wedge \delta_{x_{i}}$.
We are going to show that the map α is isotone. Again, let $X=\{x, y, z\}$, where x, y, z are distinct points. Suppose that $t_{1}, t_{2} \in[-\infty, 0]$ and $t_{1}<t_{2}$. Then $k_{X}\left(t_{1} \odot \delta_{x} \vee t_{2} \odot \delta_{y} \vee \delta_{z}\right)=\alpha\left(t_{1}\right) \wedge \delta_{x} \vee \alpha\left(t_{2}\right) \wedge \delta_{y} \vee \delta_{z}$.

For a retraction $r: X \rightarrow\{y, z\}$ the retraction that sends x to y, we obtain

$$
I_{\omega}(r)\left(t_{1} \odot \delta_{x} \vee t_{2} \odot \delta_{y} \vee \delta_{z}\right)=t_{2} \odot \delta_{y} \vee \delta_{z}
$$

and therefore

$$
I_{\omega}(r)\left(\alpha\left(t_{1}\right) \wedge \delta_{x} \vee \alpha\left(t_{2}\right) \wedge \delta_{y} \vee \delta_{z}\right)=\alpha\left(t_{2}\right) \wedge \delta_{y} \vee \delta_{z}
$$

whence we conclude that $\alpha\left(t_{1}\right)<\alpha\left(t_{2}\right)$. This finishes the proof of the proposition.
Theorem 4.9. The monads \mathbb{I}_{ω} and \mathbb{J}_{ω} are not isomorphic.
Proof. Suppose the contrary and let a natural transformation $h: I_{\omega} \rightarrow J_{\omega}$ be an isomorphism of \mathbb{I}_{ω} and \mathbb{J}_{ω}. Then, by Proposition 4.8, $h=g^{\alpha}$, for some order-preserving bijection $\alpha:[-\infty, 0] \rightarrow[-\infty, \infty]$.

Let $X=\{a, b, c\}$. Suppose that $M=\left((-1) \odot \delta_{\mu}\right) \vee \delta_{v} \in I_{\omega}^{2}(X)$, where $\mu=(-2) \odot \delta_{a} \vee \delta_{b}, v=(-3) \odot \delta_{b} \vee \delta_{c}$.
Then

$$
h_{X} \zeta_{X}(M)=h_{X}\left((-3) \odot \delta_{a} \vee(-3) \odot \delta_{b} \vee \delta_{c}\right)=\alpha(-3) \wedge \delta_{a} \vee \alpha(-3) \wedge \delta_{b} \vee \delta_{c}
$$

On the other hand,

$$
\begin{aligned}
\xi_{X} J_{\omega}\left(h_{X}\right) h_{I_{\omega}(X)}(M) & =\xi_{X} J_{\omega}\left(h_{X}\right)\left(\alpha(-1) \wedge \delta_{\mu} \vee \delta_{\nu}\right) \\
& =\xi_{X}\left(\alpha(-1) \wedge \delta_{h_{X}(\mu)} \vee \delta_{h_{X}(\nu)}\right)=\xi_{X}(\alpha(-1)) \wedge \delta_{\left(\alpha(-2) \wedge \delta_{a} \vee \delta_{c}\right)} \vee \delta_{\left(\alpha(-3) \wedge \delta_{b} \vee \delta_{c}\right)} \\
& =\left(\alpha(-2) \wedge \delta_{a} \vee \alpha(-3) \wedge \delta_{b} \vee \delta_{c}\right) \neq h_{X} \zeta_{X}(M) .
\end{aligned}
$$

Let $\mu=\bigvee_{i} \alpha_{i} \wedge \delta_{x_{i}} \in J_{\omega}(X), v=\bigvee_{j} \beta_{j} \wedge \delta_{y_{j}} \in J_{\omega}(Y)$. Define $\mu \otimes v \in J_{\omega}(X \times Y)$ by the formula:

$$
\mu \otimes v=\bigvee_{i j}\left(\alpha_{i} \vee \beta_{j}\right) \wedge \delta_{\left(x_{i}, y_{j}\right)}
$$

Lemma 4.10. The map

$$
(\mu, v) \mapsto \mu \otimes \nu: J_{\omega}(X) \times J_{\omega}(Y) \rightarrow J_{\omega}(X \times Y)
$$

is nonexpanding.
Proof. Suppose that $\hat{d}\left((\mu, v),\left(\mu^{\prime}, v^{\prime}\right)\right)<r$. Then

$$
J_{\omega}\left(q_{r}\right)(\mu \otimes v)=J_{\omega}\left(q_{r}\right)(\mu) \otimes J_{\omega}\left(q_{r}\right)(v)=J_{\omega}\left(q_{r}\right)\left(\mu^{\prime}\right) \otimes J_{\omega}\left(q_{r}\right)\left(v^{\prime}\right)=J_{\omega}\left(q_{r}\right)\left(\mu^{\prime} \otimes v^{\prime}\right)
$$

and we conclude that

$$
\hat{d}\left(J_{\omega}\left(q_{r}\right)(\mu \otimes v), J_{\omega}\left(q_{r}\right)\left(\mu^{\prime} \otimes v^{\prime}\right)\right)<r
$$

Therefore, the mentioned map is nonexpanding.

Remark 4.11. The results concerning the operation \otimes can be easily extended to the products of an arbitrary number of factors.

Theorem 4.12. There exists an extension of the symmetric power functor $S P^{n}$ onto the category of ultrametric spaces and nonexpanding maps with values that are max-min measures of finite supports.

Proof. Let X be an ultrametric space. Define a map $\theta_{X}: S P_{G}^{n}\left(J_{\omega}(X)\right) \rightarrow J_{\omega}\left(S P_{G}^{n}(X)\right)$ by the formula:

$$
\theta_{X}\left[\mu_{1}, \ldots, \mu_{n}\right]=J_{\omega}\left(p_{G}\right)\left(\mu_{1} \otimes \cdots \otimes \mu_{n}\right)
$$

First, we observe that θ_{X} is well-defined. Indeed, if $\left[\mu_{1}, \ldots, \mu_{n}\right]=\left[\nu_{1}, \ldots, \nu_{n}\right]$, then there is a permutation $\sigma \in G$ such that $v_{i}=\mu_{\sigma(i)}$, for every $i \in\{1, \ldots, n\}$. Denote by $h_{\sigma}: X^{n} \rightarrow X^{n}$ the map that sends $\left(x_{1}, \ldots, x_{n}\right)$ to ($x_{\sigma(1)}, \ldots, x_{\sigma(n)}$), then

$$
J_{\omega}\left(p_{G}\right)\left(\mu_{1} \otimes \cdots \otimes \mu_{n}\right)=J_{\omega}\left(p_{G} h_{\sigma}\right)\left(\mu_{1} \otimes \cdots \otimes \mu_{n}\right)=J_{\omega}\left(p_{G}\right) J_{\omega}\left(h_{\sigma}\right)\left(\mu_{1} \otimes \cdots \otimes \mu_{n}\right)=J_{\omega}\left(p_{G}\right)\left(v_{1} \otimes \cdots \otimes v_{n}\right)
$$

Next, note that θ_{X} is nonexpanding, i.e., a morphism of the category UMET. This easily follows from Lemma 4.10 and the fact that the map π_{G} is nonexpanding.

Let $\left(x_{1}, \ldots, x_{n}\right) \in X^{n}$. Then

$$
\theta_{X} S P_{G}^{n}\left(\delta_{X}\right)\left(x_{1}, \ldots, x_{n}\right)=J_{\omega}\left(p_{G}\right)\left(\delta_{x_{1}} \otimes \cdots \otimes \delta_{x_{n}}\right)=J_{\omega}\left(p_{G}\right)\left(\delta_{\left(x_{1}, \ldots, x_{n}\right)}\right)=\delta_{p_{G}\left(x_{1}, \ldots, x_{n}\right)}=\delta_{\left[x_{1}, \ldots, x_{n}\right]} .
$$

Now let $M_{1}, \ldots, M_{n} \in J_{\omega}^{2}(X)$ and $M_{i}=\bigvee \alpha_{i k} \wedge \delta_{\mu_{i k}}$, where $\mu_{i k} \in J_{\omega}(X)$. Then

$$
\begin{aligned}
& \xi_{X} J_{\omega}\left(\theta_{X}\right) \theta_{J_{\omega}(X)}\left(\left[M_{1}, \ldots, M_{n}\right]\right) \\
& \quad=\xi_{X} J_{\omega}\left(\theta_{X}\right) J_{\omega}\left(\pi_{G J_{\omega}(X)}\right)\left(M_{1} \otimes \cdots \otimes M_{n}\right)=J_{\omega}\left(\theta_{X}\right) J_{\omega}\left(\pi_{G J_{\omega}(X)}\right)\left(\bigvee\left(\alpha_{1 i_{1}} \wedge \cdots \wedge \alpha_{n i_{n}}\right) \wedge \delta_{\left(\mu_{1 i_{1}}, \ldots, \mu_{n i_{n}}\right)}\right) \\
& \quad=\mu_{X} J_{\omega}\left(\theta_{X}\right)\left(\bigvee\left(\alpha_{1 i_{1}} \wedge \cdots \wedge \alpha_{n i_{n}}\right) \wedge \delta_{\left[\mu_{1 i_{1}}, \ldots, \mu_{n i_{n}}\right]}\right)=\xi_{X}\left(\bigvee\left(\alpha_{1 i_{1}} \wedge \cdots \wedge \alpha_{n i_{n}}\right) \wedge \delta_{\theta_{X}\left(\left[\mu_{1 i_{1}}, \ldots, \mu_{n i_{n}}\right]\right)}\right) \\
& \quad=\bigvee\left(\alpha_{1 i_{1}} \wedge \cdots \wedge \alpha_{n i_{n}}\right) \wedge \theta_{X}\left(\left[\mu_{1 i_{1}}, \ldots, \mu_{n i_{n}}\right]\right) .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
& \theta_{X} S P_{G}^{n}\left(\xi_{X}\right)\left(\left[M_{1}, \ldots, M_{n}\right]\right) \\
& \quad=\theta_{X}\left(\left[\theta_{X}\left(M_{1}\right), \ldots, \theta_{X}\left(M_{n}\right)\right]\right)=\theta_{X}\left(\left[\vee \alpha_{1 i_{1}} \wedge \mu_{1 i_{1}}, \ldots, \vee \alpha_{1 i_{1}} \wedge \mu_{n i_{n}}\right]\right) \\
& \quad=J_{\omega}\left(\pi_{G}\right)\left(\left(\vee \alpha_{1 i_{1}} \wedge \mu_{1 i_{1}}\right) \otimes \cdots \otimes\left(\vee \alpha_{1 i_{1}} \wedge \mu_{n i_{n}}\right)\right)=J_{\omega}\left(\pi_{G}\right)\left(\bigvee\left(\alpha_{1 i_{1}} \wedge \cdots \wedge \alpha_{n i_{n}}\right) \wedge\left(\mu_{1 i_{1}} \otimes \cdots \otimes \mu_{n i_{n}}\right)\right) \\
& \quad=\bigvee\left(\alpha_{1 i_{1}} \wedge \cdots \wedge \alpha_{n i_{n}}\right) \wedge J_{\omega}\left(\pi_{G}\right)\left(\mu_{1 i_{1}} \otimes \cdots \otimes \mu_{n i_{n}}\right)
\end{aligned}
$$

i.e., $\xi_{X} J_{\omega}\left(\theta_{X}\right) \theta_{J_{\omega}(X)}=\theta_{X} S P_{G}^{n}\left(\xi_{X}\right)$. Applying Theorem 2.2 we obtain that the functor $S P_{G}^{n}$ admits an extension onto the Kleisli category of the monad \mathbb{J}_{ω}.

Proposition 4.13. The class of maps supp $=\left(\operatorname{supp}_{X}\right): J_{\omega}(X) \rightarrow \exp X$ is a morphism of the monad \mathbb{J}_{ω} into the hyperspace monad \mathbb{H}.
Proof. Clearly, for every $x \in X$, where X is an ultrametric space, we have $s_{X}(x)=\{x\}=\operatorname{supp}\left(\delta_{x}\right)$.
Now let $M \in J_{\omega}^{2}(X), M=\bigvee_{i=1}^{n} \alpha_{i} \wedge \mu_{i}$. We may assume that $\alpha_{i}>-\infty$, for all i. Let also $\mu_{i}=\bigvee_{j=1}^{m_{i}} \beta_{i j} \wedge \delta_{x_{i j}}$, where $\beta_{i j}>-\infty$, for all i, j.

Then $\xi_{X}(M)=\bigvee_{i j} \alpha_{i} \wedge \beta_{i j} \wedge \delta_{x_{i j}}$ and

$$
\begin{aligned}
& u_{X} \exp \left(\operatorname{supp}_{X}\right) \operatorname{supp}_{J_{\omega}(X)}(M) \\
& \quad=u_{X} \exp \left(\operatorname{supp}_{X}\right)\left(\left\{\mu_{1}, \ldots, \mu_{n}\right\}\right)=u_{X}\left\{\left\{x_{i 1}, \ldots, x_{i m_{i}}\right\} \mid i=1, \ldots, n\right\} \\
& \quad=\left\{x_{i j} \mid i=1, \ldots, n, j=1, \ldots, m_{i}\right\}=\operatorname{supp}\left(\xi_{X}(M)\right) .
\end{aligned}
$$

5. Completion

Denote by CUMET the category of complete ultrametric spaces and nonexpanding maps. Given a complete ultrametric space (X, d), denote by $J(X)$ the completion of the space $J_{\omega} X$.

For any morphism $f: X \rightarrow Y$ of the category UMET there exists a unique morphism $J(F): J(X) \rightarrow J(Y)$ that extends $J_{\omega}(f)$. We therefore obtain a functor $J:$ CUMET \rightarrow CUMET.

The results of the previous section have their analogs also for the functor J. In particular, we have the following result.

Proposition 5.1. The functors I and J are isomorphic.
We keep the notation δ_{X} for the natural embedding $x \mapsto \delta_{X}: X \rightarrow J(X)$. Also, for any complete X, the set $J_{\omega}^{2}(X)$ is dense in $J^{2}(X)$ and therefore the nonexpanding map $\xi_{X}: J_{\omega}^{2}(X) \rightarrow J_{\omega}(X)$ can be uniquely extended to a nonexpanding map $J^{2}(X) \rightarrow J(X)$. We keep the notation ξ_{X} for the latter map.

Theorem 5.2. The triple $\mathbb{J}=(J, \delta, \xi)$ is a monad in the category CUMET.
Proof. Follows from the proof of Theorem 4.3.

The monad \mathbb{J} is called the max-min measure monad in the category CUMET. The support map

$$
\bigvee_{i=1}^{n} \alpha_{i} \wedge \delta_{x_{i}} \mapsto\left\{x_{1}, \ldots, x_{n}\right\}: J_{\omega}(X) \rightarrow \exp X
$$

can be extended to the map supp: $J(X) \rightarrow \exp X$, which we also call the support map.

Theorem 5.3. The class of support maps $J_{\omega}(X) \rightarrow \exp X$ is a morphism of the max-min measure monad to the hyperspace monad in the category CUMET.

Theorem 5.4. There exists an extension of the symmetric power functor $S P^{n}$ onto the Kleisli category of the monad \mathbb{J}.
Proof. Similar to the proof of Theorem 4.12.

The category mentioned in the above theorem is nothing but the category of ultrametric spaces and nonexpanding max-min measure-valued maps.

Theorem 5.5. The monads \mathbb{I} and \mathbb{J} are not isomorphic.

Proof. This follows from the fact that every morphism of monads generates a morphisms of submonads generated by the subfunctors of finite support.

6. Open problems

Define the max-min measures for the compact Hausdorff spaces in the spirit of [15]. Is the extension of the symmetric power functor $S P^{n}$ onto the category of ultrametric spaces and max-min measure-valued maps unique? This is known to be valid for the case of probability measures.

The class of K-ultrametric spaces was recently defined and investigated by Savchenko. Can analogs of the results of this paper be proved for the K-ultrametric spaces? See [12] where analogous questions are considered.

Acknowledgements

This research was supported by the Slovenian Research Agency grants P1-0292-0101 and J1-4144-0101.

References

[1] M. Akian, Densities of idempotent measures and large deviations, Trans. Amer. Math. Soc. 351 (11) (1999) 4515-4543.
[2] J.-P. Aubin, Dynamic Economic Theory. A Viability Approach, Studies in Economic Theory, vol. 5, Springer-Verlag, Berlin, 1997.
[3] M. Barr, Ch. Wells, Toposes, Triples and Theories, Grundlehren der Mathematischen Wissenschaften, vol. 278, Springer-Verlag, New York, 1985.
[4] P. Bernhard, Max-plus algebra and mathematical fear in dynamic optimization, in: Set-Valued Analysis in Control Theory, Set-Valued Anal. 8 (1-2) (2000) 71-84.
[5] M. Grabisch, T. Murofushi, M. Sugeno (Eds.), Fuzzy Measures and Integrals: Theory and Applications, Studies in Fuzziness and Soft Computing, vol. 40, Physica Verlag, Heidelberg, 2000.
[6] J.I. den Hartog, E.P. de Vink, Building metric structures with the meas-functor, in: F. de Boer, M. van der Heijden, P. Klint, J. Rutten (Eds.), Liber Amicorum Jaco de Bakker, CWI, Amsterdam, 2002, pp. 93-108.
[7] O. Hubal', M. Zarichnyi, Idempotent probability measures on ultrametric spaces, J. Math. Anal. Appl. 343 (2) (2008) 1052-1060.
[8] G.L. Litvinov, V.P. Maslov, G.B. Shpiz, Idempotent functional analysis: An algebraic approach, Mat. Zametki 69 (2001) $758-797$ (Russian), English transl. in Math. Notes 69 (5-6) (2001) 696-729.
[9] S. Mac Lane, Categories for the Working Mathematician, 2nd ed., Graduate Texts in Mathematics, vol. 5, Springer-Verlag, New York, 1998.
[10] V.P. Maslov, S.N. Samborskii (Eds.), Idempotent Analysis, Adv. Soviet Math., vol. 13, Amer. Math. Soc., Providence, 1992.
[11] R. Rammal, G. Toulouse, M.A. Virasoro, Ultrametricity for physicists, Rev. Modern Phys. 58 (1986) 765-788.
[12] O.G. Savchenko, Idempotent measures and K-ultrametric spaces, Proc. Int. Geom. Center (1) (2011) 42-49.
[13] J. Vinárek, Projective monads and extensions of functors, in: Afdeling Zuivere Wiskunde, vol. 195, Mathematisch Centrum, Amsterdam, 1983, pp. 1-12. [14] E.P. de Vink, J.J.M.M. Rutten, Bisimulation for probabilistic transition systems: A coalgebraic approach, in: ICALP '97 (Bologna), Theoret. Comput. Sci. 221 (1-2) (1999) 271-293.
[15] M.M. Zarichnyi, Spaces and mappings of idempotent measures, Izv. Ross. Akad. Nauk Ser. Mat. 74 (3) (2010) 45-64 (Russian), English transl. in Izv. Math. 74 (3) (2010) 481-499.

[^0]: * Corresponding author.

 E-mail addresses: matija.cencelj@guest.arnes.si (M. Cencelj), dusan.repovs@guest.arnes.si (D. Repovš), mzar@litech.lviv.ua (M. Zarichnyi).

