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Ultrametrization of the set of all probability measures of compact support on the
ultrametric spaces was first defined by Hartog and de Vink. In this paper we consider
a similar construction for the so-called max–min measures on the ultrametric spaces. In
particular, we prove that the functors of max–min measures and idempotent measures are
isomorphic. However, we show that this is not the case for the monads generated by these
functors.
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1. Introduction

Ultrametric spaces naturally appear not only in different parts of mathematics, in particular, in real-valued analysis,
number theory and general topology, but also have applications in biology, physics, theoretical computer science, etc. (see
e.g. [6,11,14]).

Probability measures of compact support on ultrametric spaces were investigated by different authors. In particular,
Hartog and de Vink [6] defined an ultrametric on the set of all such measures. The properties of the obtained construction
were established in [7] and [14].

The aim of this paper is to find analogs of these results for other classes of measures. We define the so-called max–
min measures, which play a similar role to that of probability measures in the idempotent mathematics, i.e., the part of
mathematics which is obtained by replacing the usual arithmetic operations by idempotent operations (see [8,10]). The
methods and results of idempotent mathematics have found numerous applications [1,2,4].

Note that max–min measures are non-additive. The class of non-additive measures has numerous applications, in partic-
ular, in mathematical economics, multicriteria decision making, image processing (see, e.g., [5]).

In the case of max–min measures, we start with such measures of finite supports; the general case (max–min measures
of compact supports) is obtained by passing to the completions.
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One of our results shows that functors of max–min measures and idempotent measures in the category of ultramet-
ric spaces and nonexpanding maps are isomorphic. However, we show that monads generated by these functors are not
isomorphic.

2. Preliminaries

2.1. Max–min measures

By R̄ we denote the extended real line, R̄ = R ∪ {−∞,∞}. Let ∧ and ∨ denote the operations max and min in R̄,
respectively. Following the traditions of idempotent mathematics we denote by � the addition (convention −∞ � x = x for
all x ∈ R̄, x < ∞).

Let X be a topological space. As usual, by C(X) we denote the linear space of (real-valued) continuous functions on X .
The set C(X) is a lattice with respect to the pointwise maximum and minimum and we preserve the notation ∧ and ∨ for
these operations.

Given x ∈ X , by δx we denote the Dirac measure in X concentrated at x. Given xi ∈ X and αi ∈ R̄, i = 1, . . . ,n, such that∧n
i=1 αi = ∞, we denote by

∨n
i=1 αi ∧ δxi the functional on C(X) defined as follows:

n∨
i=1

αi ∧ δxi (ϕ) =
n∨

i=1

αi ∧ ϕ(xi).

Let us denote by Jω(X) the set of all such functionals. We call the elements of Jω(X) the max–min measures of finite
support on X . The term ‘measure’ means nothing but the fact that μ = ∨n

i=1 αi ∧ δxi ∈ Jω(X) can also be interpreted as a
set function with values in the extended real line: μ(A) = ∨{αi | xi ∈ A}, for any A ⊂ X .

The support of μ = ∨n
i=1 αi ∧ δxi ∈ Jω(X) is the set

supp(μ) = {xi | i = 1, . . . ,n, αi > −∞} ⊂ X .

For any map f : X → Y of topological spaces, define the map Jω( f ) : Jω(X) → Jω(Y ) by the formula:

Jω( f )

(
n∨

i=1

αi ∧ δxi

)
=

n∨
i=1

αi ∧ δ f (xi).

Let us recall that Iω(X) denotes the set of functionals of the form
∨

i αi � δxi , where αi ∈ R̄ and
∨

i αi = 0. If ϕ ∈ C(X),
then (

∨
i αi � δxi )(ϕ) = ∨

i αi � ϕ(xi). See e.g. [15], for the theory of spaces Iω(X) (called spaces of idempotent measures
of finite support) as well as related spaces I(X) (called spaces of idempotent measures of compact support). Recall that the
support of μ = ∨n

i=1 αi � δxi ∈ Iω(X) is the set

supp(μ) = {xi | i = 1, . . . ,n, αi > −∞} ⊂ X .

Remark 2.1. We adopt the following conventions: +∞ ∧ δx = δx in Jω(X) and 0 � δx = δx in Iω(X).

2.2. Ultrametric spaces

Recall that a metric d on a set X is said to be an ultrametric if the following strong triangle inequality holds:

d(x, y) � max
{

d(x, z),d(z, y)
}

for all x, y, z ∈ X .
By O r(A) we denote the r-neighborhood of a set A in a metric space. We write O r(x) if A = {x}. It is well known that

in ultrametric spaces, for any r > 0, every two distinct elements of the family Or = {O r(x) | x ∈ X} are disjoint. We denote
by Fr the set of all functions on X that are constant on the elements of the family Or . By qr : X → X/Or we denote the
quotient map. We endow the set X/Or with the quotient metric, dr . It is easy to see that dr(O r(x), O r(y)) = d(x, y), for any
disjoint O r(x), O r(y), and the obtained metric is an ultrametric.

Recall that a map f : X → Y , where (X,d) and (Y ,�) are metric spaces, is called nonexpanding if �( f (x), f (y))� d(x, y),
for every x, y ∈ X . Note that the quotient map qr : X → X/Or is nonexpanding.

2.3. Hyperspaces and symmetric powers

By exp X we denote the set of all nonempty compact subsets in X endowed with the Hausdorff metric:

dH (A, B) = inf
{
ε > 0

∣∣ A ⊂ O ε(B), B ⊂ O ε(A)
}
.
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We say that exp X is the hyperspace of X . For a continuous map f : X → Y the map exp f : exp X → exp Y is defined as
(exp f )(A) = f (A).

It is well known that exp f is a nonexpanding map if so is f . We denote by sX : X → exp X the singleton map, sX (x) = {x}.
By Sn we denote the group of permutations of the set {1,2, . . . ,n}. Every subgroup G of the group Sn acts on the n-th

power Xn of the space X by the permutation of factors. Let S Pn
G(X) denote the orbit space of this action. By [x1, . . . , xn] (or

briefly [xi]) we denote the orbit containing (x1, . . . , xn) ∈ Xn .
If (X,d) is a metric space, then S Pn

G(X) is endowed with the following metric d̃,

d̃
([xi], [yi]

) = min
{

max
{

d(xi, yσ (i))
∣∣ i = 1, . . . ,n

} ∣∣ σ ∈ G
}
.

It is well known that the space (S Pn
G(X), d̃) is ultrametric if such is also (X,d).

Define the map πG = πG X : Xn → S Pn
G(X) by the formula πG(x1, . . . , xn) = [x1, . . . , xn]. It was shown in [7] (and it is easy

to see) that the map πG is nonexpanding.

2.4. Monads

We recall some necessary definitions from category theory; see, e.g., [3,9] for details. A monad T = (T , η,μ) in the
category E consists of an endofunctor T :E → E and natural transformations η : 1E → T (unity), μ : T 2 = T ◦ T → T (multi-
plication) satisfying the relations μ ◦ Tη = μ ◦ ηT = 1T and μ ◦ μT = μ ◦ Tμ.

Given two monads, T = (T , η,μ) and T′ = (T ′, η′,μ′), we say that a natural transformation α : T → T ′ is a morphism of
T into T′ if αη = η′ and μ′αT T (α) = αμ.

We denote by UMET the category of ultrametric spaces and nonexpanding maps. One of examples of monads on the
category UMET is the hyperspace monad H = (exp, s, u). The singleton map sX : X → exp X is already defined and the map
u X : exp2 X → exp X is the union map, u X (A) = ⋃

A.
It is well known (and easy to prove) that the max-metric on the finite product of ultrametric spaces is an ultrametric.

We will always endow the product with this ultrametric.
The Kleisli category of a monad T is a category CT defined by the conditions: |CT| = |C|, CT(X, Y ) = C(X, T (Y )), and the

composition g ∗ f of morphisms f ∈ CT(X, Y ), g ∈ CT(Y , Z) is given by the formula g ∗ f = μZ T (g) f .
Define the functor ΦT :C → CT by

ΦT(X) = X, ΦT( f ) = ηY f , X ∈ |C|, f ∈ C(X, Y ).

A functor F :CT → CT is called an extension of the functor F :C → C on the Kleisli category CT if ΦTF = FΦT .
The proof of the following theorem can be found in [13].

Theorem 2.2. There exists a bijective correspondence between the extensions of functor F onto the Kleisli category CT of a monad T

and the natural transformations ξ : F T → T F satisfying

(1) ξ F (η) = ηF ;
(2) μF T (ξ)ξT = ξ F (μ).

3. Ultrametric on the set of max–min measures

Let (X,d) be an ultrametric space. For any μ,ν ∈ Jω(X), let

d̂(μ,ν) = inf
{

r > 0
∣∣ μ(ϕ) = ν(ϕ), for any ϕ ∈ C(X)

}
.

Since μ,ν are of finite support, it is easy to see that d̂ is well defined.

Theorem 3.1. The function d̂ is an ultrametric on the set Jω(X).

Proof. We only have to check the strong triangle inequality. Suppose that μ,ν, τ ∈ Jω(X) and d̂(μ, τ ) < r, d̂(ν, τ ) < r. Then,
for every ϕ ∈Fr , we have μ(ϕ) = τ (ϕ) = ν(ϕ), whence d̂(μ,ν) < r. �
Proposition 3.2. The map x → δx : X → Jω(X) is an isometric embedding.

Proof. Let x, y ∈ X and d(x, y) < r. Then for every ϕ ∈ Fr(X), we have δx(ϕ) = ϕ(x) = ϕ(y) = δy(ϕ), whence d̂(δx, δy) < r.

Therefore, d̂(δxδy)� d(x, y). The proof of the reverse inequality is simple as well. �
Proposition 3.3. Let f : X → Y be a nonexpanding map of an ultrametric space (X,d) into an ultrametric space (Y ,�). Then the
induced map Jω( f ) is also nonexpanding.
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Proof. Since the map f is nonexpanding, ϕ f ∈Fr(X), for any ϕ ∈Fr(Y ).
If μ,ν ∈ Jω(X) and d̂(μ,ν) < r, then, for every ϕ ∈Fr(Y ), we have

Jω( f )(μ)(ϕ) = μ(ϕ f ) = ν(ϕ f ) = Jω( f ) = Jω( f )(ν)(ϕ)

and therefore �̂( Jω( f )(μ), Jω( f )(ν)) < r. �
We therefore obtain a functor Jω on the category UMET.

Proposition 3.4. If μ,ν ∈ Jω(X), then the following are equivalent:

(1) d̂(μ,ν) < r;
(2) Jω(qr)(μ) = Jω(qr)(ν).

Proof. (1) ⇒ (2). For every ϕ : X/Or → R we have ϕqr ∈Fr and therefore

Jω(qr)(μ) = μ(ϕqr) = ν(ϕqr) = Jω(qr)(ν).

Thus, Jω(qr)(μ) = Jω(qr)(ν).
(2) ⇒ (1). Let ϕ ∈Fr , then ϕ factors through qr , i.e. there exists ψ : X →R such that ϕ = ψqr . Then

μ(ϕ) = μ(ψqr) = Jω(qr)(μ)(ϕ) = Jω(qr)(ν)(ϕ) = ν(ψqr) = ν(ϕ).

Thus, d̂(μ,ν) < r. �
In the sequel, given a metric space (X,d), we denote also by d the (extended, i.e. taking values in [0,∞]) metric on the

set of maps from a nonempty set Y into X defined by the formula: d( f , g) = sup{d( f (x), g(x)) | x ∈ X}.

Proposition 3.5. The functor Jω is locally non-expansive, i.e., for every nonexpanding maps f , g of an ultrametric space (X,d) into
an ultrametric space (Y ,�) we have �̂( Jω( f ), Jω(g))� �( f , g).

Proof. If �( f , g) = ∞, then there is nothing to prove. Suppose that �( f , g) < r < ∞. Then qr f = qr g , where qr : Y →
Y /Or(Y ) is the quotient map. For every μ ∈ Jω(X), we obtain

Jω(qr) Jω( f )(μ) = Jω(qr f )(μ) = Jω(qr g)(μ) Jω(qr) Jω(g)(μ)

and by Proposition 3.4, �̂( Jω( f )(μ), Jω(g)(μ)) < r. �
4. Categorical properties

Let (X,d) be an ultrametric space. Given a function ϕ ∈ C(X), define ϕ̄ : Jω(X) → R as follows: ϕ̄(μ) = μ(ϕ).

Proposition 4.1. If ϕ ∈Fr(X), then ϕ̄ ∈Fr( Jω(X)).

Proof. Given μ,ν ∈ Jω(X) with d̂(μ,ν) < r, we see that ϕ̄(μ) = μ(ϕ) = ν(ϕ) = ϕ̄(ν), whence ϕ̄ ∈Fr( Jω(X)). �
Let M ∈ J 2

ω(X). Define ξX (M) by the condition ξX (M)(ϕ) = M(ϕ̄), for any ϕ ∈ C(X). If M = ∨
i αi ∧ δμi and μi = ∨

j βi j ∧
δxi j , then

ξX (M) =
∨

i

∨
j

αi ∧ βi j ∧ δxi j .

Proposition 4.2. The map ξX is nonexpanding.

Proof. Let d denote the ultrametric on X , then d̂ and ˆ̂d denote the ultrametrics on Jω(X) and J 2
ω(X) respectively. Let

M, N ∈ J 2
ω(X) and ˆ̂d(M, N) < r, for some r > 0. Then, for every ϕ ∈F(X) we obtain

ξX (M)(ϕ) = M(ϕ̄) = N(ϕ̄) = ξX (N)(ϕ)

and therefore d̂(ξX (M), ξX (N)) < r. �
It is easy to verify that the maps ξX give rise to a natural transformation of the functor J 2

ω to the functor Jω in the
category UMET.
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Theorem 4.3. The triple Jω = ( Jω, δ, ξ) is a monad in the category UMET.

Proof. Let μ = ∨
i αi ∧ δxi ∈ Jω(X). Then

ξX Jω(δX )(μ) = ξX

(∨
i

αi ∧ δδxi

)
=

∨
i

αi ∧ δxi = μ

and ξXδ Jω(X)(μ) = ξX (δμ) = μ. Therefore ξ Jω(δ) = 1 Jω = ξδ Jω .
Let M = ∨

i αi ∧ δMi ∈ J 3
ω(X), where Mi = ∨

j βi j ∧ δμi j . Then

ξX Jω(ξX )(M) = ξX

(∨
i

αi ∧ δξX (Mi)

)
= ξX

(∨
i

αi ∧ δ∨
j βi j∧μi j

)
=

∨
i

∨
j

αi ∧ βi j ∧ μi j

=
∨

i

αi ∧
(∨

j

βi j ∧ δμi j

)
= ξX

(∨
i

αi ∧ Mi

)
= ξXξ Jω(X)(M)

and therefore ξ Jω(ξ) = ξξ Jω . �
Proposition 4.4. The spaces Iω(X) and Jω(X) are isometric.

Proof. Define a map h = hX : Iω(X) → Jω(X) as follows. Let μ = ∨
i αi � δxi ∈ Iω(X). Define h(μ) = ∨

i − ln(−αi) ∧ δxi ∈
Jω(X).

Suppose that d̂(μ,ν) < r, where ν = ∨
j β j � δy j ∈ Iω(X). For every x ∈ X and t � 0, define ϕx

t : X → R by the conditions:
ϕx

t (y) = 0 if y ∈ Br(x) and ϕx
t (y) = t otherwise.

Then

max
xi∈Br(x)

αi = lim
i→−∞

μ
(
ϕx

t

) = lim
i→−∞

ν
(
ϕx

t

) = max
y j∈Br(x)

β j.

If ϕ ∈Fr , then

μ(ϕ) =
∨

i

αi � ϕ(xi) =
∨
x∈X

∨
xi∈Br(x)

αi � ϕ(xi) =
∨
x∈X

∨
y j∈Br(x)

β j � ϕ(y j)

and therefore

h(μ)(ϕ) =
∨

i

− ln(−αi) ∧ ϕ(xi) =
∨
x∈X

∨
xi∈Br(x)

− ln(−αi) ∧ ϕ(xi) =
∨
x∈X

∨
y j∈Br(x)

− ln(−β j) ∧ ϕ(y j) = h(ν)(ϕ).

Thus, d̂(h(μ),h(ν)) < r and we see that the map h is nonexpanding. One can similarly prove that the inverse map h−1

is also nonexpanding. �
Proposition 4.5. The class {hX } is a natural transformation of the functor Iω to the functor Jω .

Proof. Let f : X → Y be a map and μ = ∨
i αi � δxi ∈ Iω(X). Then

Jω( f )hX (μ) = Jω( f )

(∨
i

− ln(−αi) ∧ δxi

)
=

∨
i

− ln(−αi) ∧ δ f (xi) = hY

(∨
i

αi � δ f (xi)

)
= hY Iω( f )(μ). �

Corollary 4.6. The functors Iω and Jω are isomorphic.

Remark 4.7. Let α : [−∞,0] → [−∞,∞] be an order-preserving bijection. Then the maps gα
X : Iω(X) → Jω(X) defined by

the formula gα
X (

∨
i ti � δxi ) = ∨

i α(ti) ∧ δxi , determines an isomorphism of the functors Iω and Jω .

Proposition 4.8. Every isomorphism of the functors Iω and Jω is of the form gα (see Remark 4.7), for some order-preserving bijection
α : [−∞,0] → [−∞,∞].

Proof. Let k : Iω → Jω be an isomorphism. Let X = {x, y, z}, where x, y, z are distinct points. Since the functor isomorphisms
preserve the supports, we obtain

kX (t � δx ∨ t � δy ∨ δz) = α(t) ∧ δx ∨ α(t) ∧ δy ∨ β(t) ∧ δz,

where α(t) ∨ β(t) = +∞.
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We are going to show that β(t) = +∞, for every t ∈ [−∞,0]. First note that kX (δx ∨ δy ∨ δz) = δx ∨ δy ∨ δz . Suppose that,
for some t ∈ (−∞, 0), we have β(t) < +∞. Denote by r : X → {y, z} the retraction that sends x to z. Then, since in this case
α(t) = +∞, we obtain

k{y,z}
(

Iω(r)(t � δx ∨ t � δy ∨ δz)
) = k{y,z}(t � δy ∨ δz) = δy ∨ δz,

which is impossible, because the natural transformations preserve the symmetry with respect to the nontrivial permutation
of {y, z}.

Thus,

kX (t � δx ∨ t � δy ∨ δz) = α(t) ∧ δx ∨ α(t) ∧ δy ∨ δz

and identifying the points x and y we conclude that k{y,z}(t � δy ∨ δz) = (α(t) ∧ δy ∨ δz). We see therefore that k = gα .
It is clear that α is a bijection of [−∞,0] onto [−∞,∞]. Suppose now that X = {x1, x2, . . . , xn}, where x1, x2, . . . , xn are

distinct points. Let μ = ∨n
i=1 ti � δxi be such that t1 = 0. Given i > 1, consider a retraction ri : X → {x1, xi} that sends every

x j , j �= i, to x1. Then, by what was proved above,

k{x1,xi} Iω(ri)(μ) = k{x1,xi}(δx1 ∨ ti � δx1) = δx1 ∨ α(ti) ∧ δx1 = Jω(ri)
(
kX (μ)

)
and collecting the data for all i > 1 we conclude that kX (μ) = ∨n

i=1 α(ti) ∧ δxi .
We are going to show that the map α is isotone. Again, let X = {x, y, z}, where x, y, z are distinct points. Suppose that

t1, t2 ∈ [−∞,0] and t1 < t2. Then kX (t1 � δx ∨ t2 � δy ∨ δz) = α(t1) ∧ δx ∨ α(t2) ∧ δy ∨ δz .
For a retraction r : X → {y, z} the retraction that sends x to y, we obtain

Iω(r)(t1 � δx ∨ t2 � δy ∨ δz) = t2 � δy ∨ δz

and therefore

Iω(r)
(
α(t1) ∧ δx ∨ α(t2) ∧ δy ∨ δz

) = α(t2) ∧ δy ∨ δz,

whence we conclude that α(t1) < α(t2). This finishes the proof of the proposition. �
Theorem 4.9. The monads Iω and Jω are not isomorphic.

Proof. Suppose the contrary and let a natural transformation h : Iω → Jω be an isomorphism of Iω and Jω . Then, by
Proposition 4.8, h = gα , for some order-preserving bijection α : [−∞,0] → [−∞,∞].

Let X = {a,b, c}. Suppose that M = ((−1) � δμ) ∨ δν ∈ I2
ω(X), where μ = (−2) � δa ∨ δb , ν = (−3) � δb ∨ δc .

Then

hXζX (M) = hX
(
(−3) � δa ∨ (−3) � δb ∨ δc

) = α(−3) ∧ δa ∨ α(−3) ∧ δb ∨ δc .

On the other hand,

ξX Jω(hX )hIω(X)(M) = ξX Jω(hX )
(
α(−1) ∧ δμ ∨ δν

)
= ξX

(
α(−1) ∧ δhX (μ) ∨ δhX (ν)

) = ξX
(
α(−1)

) ∧ δ(α(−2)∧δa∨δc) ∨ δ(α(−3)∧δb∨δc)

= (
α(−2) ∧ δa ∨ α(−3) ∧ δb ∨ δc

) �= hXζX (M). �
Let μ = ∨

i αi ∧ δxi ∈ Jω(X), ν = ∨
j β j ∧ δy j ∈ Jω(Y ). Define μ ⊗ ν ∈ Jω(X × Y ) by the formula:

μ ⊗ ν =
∨

i j

(αi ∨ β j) ∧ δ(xi ,y j).

Lemma 4.10. The map

(μ,ν) → μ ⊗ ν : Jω(X) × Jω(Y ) → Jω(X × Y )

is nonexpanding.

Proof. Suppose that d̂((μ,ν), (μ′, ν ′)) < r. Then

Jω(qr)(μ ⊗ ν) = Jω(qr)(μ) ⊗ Jω(qr)(ν) = Jω(qr)
(
μ′) ⊗ Jω(qr)

(
ν ′) = Jω(qr)

(
μ′ ⊗ ν ′)

and we conclude that

d̂
(

Jω(qr)(μ ⊗ ν), Jω(qr)
(
μ′ ⊗ ν ′)) < r.

Therefore, the mentioned map is nonexpanding. �
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Remark 4.11. The results concerning the operation ⊗ can be easily extended to the products of an arbitrary number of
factors.

Theorem 4.12. There exists an extension of the symmetric power functor S Pn onto the category of ultrametric spaces and nonexpand-
ing maps with values that are max–min measures of finite supports.

Proof. Let X be an ultrametric space. Define a map θX : S Pn
G( Jω(X)) → Jω(S Pn

G(X)) by the formula:

θX [μ1, . . . ,μn] = Jω(pG)(μ1 ⊗ · · · ⊗ μn).

First, we observe that θX is well-defined. Indeed, if [μ1, . . . ,μn] = [ν1, . . . , νn], then there is a permutation σ ∈ G such
that νi = μσ(i) , for every i ∈ {1, . . . ,n}. Denote by hσ : Xn → Xn the map that sends (x1, . . . , xn) to (xσ(1), . . . , xσ(n)), then

Jω(pG)(μ1 ⊗ · · · ⊗ μn) = Jω(pGhσ )(μ1 ⊗ · · · ⊗ μn) = Jω(pG) Jω(hσ )(μ1 ⊗ · · · ⊗ μn) = Jω(pG)(ν1 ⊗ · · · ⊗ νn).

Next, note that θX is nonexpanding, i.e., a morphism of the category UMET. This easily follows from Lemma 4.10 and the
fact that the map πG is nonexpanding.

Let (x1, . . . , xn) ∈ Xn . Then

θX S Pn
G(δX )(x1, . . . , xn) = Jω(pG)(δx1 ⊗ · · · ⊗ δxn) = Jω(pG)(δ(x1,...,xn)) = δpG (x1,...,xn) = δ[x1,...,xn].

Now let M1, . . . , Mn ∈ J 2
ω(X) and Mi = ∨

αik ∧ δμik , where μik ∈ Jω(X). Then

ξX Jω(θX )θ Jω(X)

([M1, . . . , Mn])
= ξX Jω(θX ) Jω(πG Jω(X))(M1 ⊗ · · · ⊗ Mn) = Jω(θX ) Jω(πG Jω(X))

(∨
(α1i1 ∧ · · · ∧ αnin) ∧ δ(μ1i1 ,...,μnin )

)
= μX Jω(θX )

(∨
(α1i1 ∧ · · · ∧ αnin) ∧ δ[μ1i1 ,...,μnin ]

)
= ξX

(∨
(α1i1 ∧ · · · ∧ αnin ) ∧ δθX ([μ1i1 ,...,μnin ])

)
=

∨
(α1i1 ∧ · · · ∧ αnin) ∧ θX

([μ1i1 , . . . ,μnin ]
)
.

On the other hand,

θX S Pn
G(ξX )

([M1, . . . , Mn])
= θX

([
θX (M1), . . . , θX (Mn)

]) = θX
([∨α1i1 ∧ μ1i1 , . . . ,∨α1i1 ∧ μnin ]

)
= Jω(πG)

(
(∨α1i1 ∧ μ1i1) ⊗ · · · ⊗ (∨α1i1 ∧ μnin)

) = Jω(πG)
(∨

(α1i1 ∧ · · · ∧ αnin) ∧ (μ1i1 ⊗ · · · ⊗ μnin)
)

=
∨

(α1i1 ∧ · · · ∧ αnin) ∧ Jω(πG)(μ1i1 ⊗ · · · ⊗ μnin),

i.e., ξX Jω(θX )θ Jω(X) = θX S Pn
G(ξX ). Applying Theorem 2.2 we obtain that the functor S Pn

G admits an extension onto the
Kleisli category of the monad Jω . �
Proposition 4.13. The class of maps supp = (suppX ) : Jω(X) → exp X is a morphism of the monad Jω into the hyperspace monad H.

Proof. Clearly, for every x ∈ X , where X is an ultrametric space, we have sX (x) = {x} = supp(δx).
Now let M ∈ J 2

ω(X), M = ∨n
i=1 αi ∧ μi . We may assume that αi > −∞, for all i. Let also μi = ∨mi

j=1 βi j ∧ δxi j , where
βi j > −∞, for all i, j.

Then ξX (M) = ∨
i j αi ∧ βi j ∧ δxi j and

u X exp(suppX ) supp Jω(X)(M)

= u X exp(suppX )
({μ1, . . . ,μn}) = u X

{{xi1, . . . , ximi }
∣∣ i = 1, . . . ,n

}
= {xij | i = 1, . . . ,n, j = 1, . . . ,mi} = supp

(
ξX (M)

)
. �

5. Completion

Denote by CUMET the category of complete ultrametric spaces and nonexpanding maps. Given a complete ultrametric
space (X,d), denote by J (X) the completion of the space Jω X .

For any morphism f : X → Y of the category UMET there exists a unique morphism J (F ) : J (X) → J (Y ) that extends
Jω( f ). We therefore obtain a functor J : CUMET → CUMET.

The results of the previous section have their analogs also for the functor J . In particular, we have the following re-
sult.
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Proposition 5.1. The functors I and J are isomorphic.

We keep the notation δX for the natural embedding x → δx : X → J (X). Also, for any complete X , the set J 2
ω(X) is

dense in J 2(X) and therefore the nonexpanding map ξX : J 2
ω(X) → Jω(X) can be uniquely extended to a nonexpanding

map J 2(X) → J (X). We keep the notation ξX for the latter map.

Theorem 5.2. The triple J= ( J , δ, ξ) is a monad in the category CUMET.

Proof. Follows from the proof of Theorem 4.3. �
The monad J is called the max–min measure monad in the category CUMET. The support map

n∨
i=1

αi ∧ δxi → {x1, . . . , xn} : Jω(X) → exp X

can be extended to the map supp : J (X) → exp X , which we also call the support map.

Theorem 5.3. The class of support maps Jω(X) → exp X is a morphism of the max–min measure monad to the hyperspace monad in
the category CUMET.

Theorem 5.4. There exists an extension of the symmetric power functor S Pn onto the Kleisli category of the monad J.

Proof. Similar to the proof of Theorem 4.12. �
The category mentioned in the above theorem is nothing but the category of ultrametric spaces and nonexpanding

max–min measure-valued maps.

Theorem 5.5. The monads I and J are not isomorphic.

Proof. This follows from the fact that every morphism of monads generates a morphisms of submonads generated by the
subfunctors of finite support. �
6. Open problems

Define the max–min measures for the compact Hausdorff spaces in the spirit of [15]. Is the extension of the symmetric
power functor S Pn onto the category of ultrametric spaces and max–min measure-valued maps unique? This is known to
be valid for the case of probability measures.

The class of K -ultrametric spaces was recently defined and investigated by Savchenko. Can analogs of the results of this
paper be proved for the K -ultrametric spaces? See [12] where analogous questions are considered.
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