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1. Introduction

In this paper we shall present a simple criterion for recognizing topological spaces that are homeomorphic to (open
subspaces of) LF-spaces. This criterion was applied in [3,4,7] for detecting topological groups that are homeomorphic to
(open subspaces of) LF-spaces.

We recall that an LF-space is the direct limit lc-lim−→ Xn of an increasing sequence

X0 ⊂ X1 ⊂ X2 ⊂ · · ·
of Fréchet (= locally convex complete linear metric) spaces in the category of locally convex spaces. The simplest example
of a non-metrizable LF-space is the inductive limit R

∞ = lc-lim−→R
n of the sequence

R ⊂ R
2 ⊂R

3 ⊂ · · ·
of Euclidean spaces, where each space R

n is identified with the hyperplane R
n ×{0} in R

n+1. The space R
∞ is topologically

isomorphic to the direct sum
⊕

n∈ω R of one-dimensional Fréchet spaces in the category of locally convex spaces.
Mankiewicz [17] obtained a topological classification of LF-spaces and proved that each LF-space is homeomorphic to the

direct sum
⊕

n∈ω l2(κi) of Hilbert spaces for some sequence (κi)i∈ω of cardinals. Here l2(κ) stands for the Hilbert space with
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orthonormal base of cardinality κ . In particular, l2(n) = R
n for a finite cardinal n. A more precise version of Mankiewicz’s

classification says that the spaces

• l2(κ) for some cardinal κ � 0,
• R

∞ ,
• l2(κ) ×R

∞ for some κ �ω, and
• ⊕

n∈ω l2(κi) for a strictly increasing sequence of infinite cardinals (κi)i∈ω

are pairwise non-homeomorphic and represent all possible topological types of LF-spaces. In particular, each infinite-
dimensional separable LF-space is homeomorphic to one of the following spaces: l2, R∞ or l2 ×R

∞ .
The topological characterizations of the LF-spaces l2 and R

∞ were given by Toruńczyk [23,24] and Sakai [21], respec-
tively. These characterizations belong among the best achievements of the classical infinite-dimensional topology. In this
paper we shall present a topological characterization of other LF-spaces, in particular, l2 × R

∞ . First, we recall Sakai’s
topological characterization of the LF-space R

∞ . This characterization is based on the observation that the LF-space
R

∞ = lc-lim−→R
n carries the topology of the topological direct limit of the tower (Rn)n∈ω of finite-dimensional Euclidean

spaces.
By the topological direct limit t-lim−→ Xn of a tower

X0 ⊂ X1 ⊂ X2 ⊂ · · ·
of topological spaces we understand the union X = ⋃

n∈ω Xn endowed with the largest topology turning the identity inclu-
sions Xn → X , n ∈ ω, into continuous maps.

Theorem 1.1 (Sakai). A topological space X is homeomorphic to (an open subspace of ) the space R∞ if and only if

(1) X is homeomorphic to the topological direct limit t-lim−→ Xn of a tower (Xn)n∈ω of finite-dimensional metrizable compacta and
(2) each embedding f : B → X of a closed subset B ⊂ A of a finite-dimensional metrizable compact space A extends to an embedding

of (an open neighborhood of B in) the space A into X.

Deleting the adjective “finite-dimensional” from this characterization, we obtain a characterization of (open subspaces
of) the space Q ×R

∞ where Q = [0,1]ω is the Hilbert cube, see [21].
Replacing the class of finite-dimensional compact metrizable spaces in Theorem 1.1 by the class of Polish spaces,

Pentsak [20] obtained a topological characterization of (open subspaces of) the topological direct limit t-lim−→(l2)n of the
tower of Hilbert spaces

l2 ⊂ l2 × l2 ⊂ · · · ⊂ ln2 ⊂ · · · ,
where each space ln2 is identified with the subspace ln2 × {0} of the Hilbert space ln+1

2 . However, the topology of the topo-
logical direct limit t-lim−→ ln2 is strictly stronger than the topology of the direct limit lc-lim−→ ln2 of that tower in the category of
locally convex spaces. Moreover, t-lim−→ ln2 is not even homeomorphic to a topological group, see [2]. In fact, an LF-space X
is homeomorphic to the topological direct limit of a tower of metrizable spaces if and only if X is either metrizable or is
topologically isomorphic to R

∞ , see [1] and [8].
This means that topological direct limits cannot be used for describing the topology of non-metrizable LF-spaces which

are different from R
∞ . On the other hand, it was discovered in [6] that for any tower (Xn)n∈ω of Fréchet spaces the

topology of the LF-space X = lc-lim−→ Xn coincides with the topology of the direct limit u-lim−→ Xn of this tower in the category
of uniform spaces!

By the uniform direct limit u-lim−→ Xn of a tower

X0 ⊂ X1 ⊂ X2 ⊂ · · ·
of uniform spaces we understand the union X = ⋃

n∈ω Xn endowed with the largest uniformity turning the identity inclu-
sions Xn → X into uniformly continuous maps. Each linear topological space L carries the canonical uniformity generated
by the entourages {(x, y) ∈ L: x − y ∈ U } where U = −U runs over all symmetric neighborhoods of the origin of L.

For any tower (Xn)n∈ω of Fréchet spaces the identity map u-lim−→ Xn → lc-lim−→ Xn is continuous (because each continuous
linear operator is uniformly continuous). A less trivial fact established in [6] is the continuity of the inverse map lc-lim−→ Xn →
u-lim−→ Xn . This means that we can identify LF-spaces with uniform direct limits of Fréchet spaces and reduce the problem
of topological characterization of LF-spaces to the problem of recognizing uniform direct limits that are homeomorphic to
LF-spaces. The answer to this problem will be given in Theorems 1.3 and 1.5 after some definitions.

All spaces considered in this paper are completely regular and all maps are continuous. On the other hand, functions
need not be continuous. A pointed space is a space X with a distinguished point, which will be denoted by ∗X .

The small box-product of a sequence of pointed topological spaces (Xn)n∈ω is the subspace

� Xn =
{
(xn)n∈ω ∈ � Xn: ∃m ∈ ω ∀n � m xn = ∗Xn

}

n∈ω n∈ω
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of the box-product �n∈ω Xn . The latter space is the Tychonov product
∏

n∈ω Xn endowed with the topology generated by
the products

∏
n∈ω Un of open subsets Un ⊂ Xn , n ∈ ω. For a subset A ⊂ ω let

�
n∈A

Xn =
{
(xn)n∈ω ∈ �

n∈ω
Xn: {n ∈ ω: xn 	= ∗Xn } ⊂ A

}
⊂ �

n∈ω
Xn.

It follows that �n∈ω Xn = ⋃
n∈ω �i�n Xi . By Proposition 5.3 of [6], for any sequence (Xn)n∈ω of locally convex linear topo-

logical spaces the topology of the small box-product �n∈ω Xn coincides with the topology of the direct sum
⊕

n∈ω Xn in the
category of locally convex linear topological spaces.

For a uniform space X its uniformity will be denoted by UX . Elements of the uniformity UX are called entourages. The
Hausdorff property of X implies that

⋂
UX = {(x, x): x ∈ X}. A uniform space X is called metrizable if its uniformity is

generated by a metric. For a point a ∈ X , a subset A ⊂ X , and an entourage U ∈ UX , let B(a, U ) = {x ∈ X: (x,a) ∈ U } and
B(A, U ) = ⋃

a∈A B(a, U ) be the U -neighborhoods of a and A, respectively. A neighborhood O (A) of A in X is called uniform
if O (A) contains the U -neighborhood B(A, U ) for some entourage U ∈ UX .

Definition 1.2. Let C be a pointed topological space. A subset A of a uniform space X is called C-complemented in X if there
is a homeomorphism γ : A × C → X such that

(1) for any neighborhood V ⊂ C of ∗C there is an entourage U ∈ UX such that B(A, U ) ⊂ γ (A × V );
(2) for any entourage U ∈ UX there is a neighborhood V ⊂ C of ∗C such that γ ({a} × V ) ⊂ B(a, U ) for each a ∈ A.

A subset A of X is called locally C-complemented if for some open neighborhood V ⊂ C of ∗C the set A is V -complemented
in some open uniform neighborhood U (A) of A in X .

The following theorem shows that often uniform direct limits are (locally) homeomorphic to small box-products. We
shall say that a topological space X is locally homeomorphic to a topological space Y if each point x ∈ X has an open
neighborhood O x ⊂ X which is homeomorphic to an open subspace of Y .

Theorem 1.3. Let (Xn)n∈ω be a tower of uniform spaces such that for every n ∈ ω the space Xn is (locally) Cn-complemented in Xn+1
for some pointed topological space Cn and Xn is (locally) homeomorphic to the product X0 × �i<n Ci . Then the uniform direct limit
u-lim−→ Xn is (locally) homeomorphic to the small box-product X0 ×�n∈ω Cn.

In light of Theorem 1.3 it is important to recognize small box-products that are (locally) homeomorphic to LF-spaces. In
this respect we have the following:

Conjecture 1.4. The small box-product �n∈ω Xn of pointed topological spaces is homeomorphic to (an open subset of) an LF-space if
for every n ∈ ω the finite product

∏
i�n Xi is homeomorphic to (an open subset of) a Hilbert space.

We shall confirm this conjecture under an additional assumption that for infinitely many numbers n ∈ ω the space Xn is
lz-pointed. The definition of an lz-pointed space involves the notion of a strong Z -set, well known in infinite-dimensional
topology, see [5, §1.4], [10], and [14, §2.2].

We recall that a closed subset A of a topological space X is a (strong) Z -set in X if for any open cover U of X there
is a map f : X → X such that f is U -near to the identity map idX of X and (the closure f (X) of) the set f (X) does not
intersect A. Two maps f , g : X → X are called U -near if for each point x ∈ X the doubleton { f (x), g(x)} lies in some set
U ∈ U . It is clear that each strong Z -set is a Z -set. The converse is not true, see [11]. However, in Hilbert spaces each Z -set
is a strong Z -set, see [11,24]. A point x0 of a space X will be called a strong Z -point in X if the singleton {x0} is a strong
Z -set in X .

A pointed space X will be called

• l-pointed if ∗X is not isolated and X is locally compact;
• z-pointed if ∗X is a strong Z -point in X ;
• lz-pointed if X is l-pointed or z-pointed.

For example, each non-trivial Hilbert space H with distinguished point 0 is an lz-pointed space. More precisely, H is l-
pointed if 0 < dim(H) < ∞ and H is z-pointed if dim(H) = ∞.

The following theorem (that will be proved in Section 10) confirms Conjecture 1.4 for small box-products of lz-pointed
spaces.

Theorem 1.5. The small box-product �n∈ω Xn of pointed topological spaces Xn is homeomorphic to (an open subset of) an LF-space
if for every n ∈ ω the finite product

∏
i�n Xi is homeomorphic to (an open subset of) a Hilbert space and for infinitely many numbers

n ∈ ω the space Xn is lz-pointed.
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A subset A of a uniform space X will be called (locally) lz-complemented if A is (locally) C-complemented in X for some
lz-pointed space C . By analogy we define (locally) z-complemented subsets of uniform spaces.

Theorems 1.3 and 1.5 imply the following criterion.

Theorem 1.6. The uniform direct limit u-lim−→ Xn of a tower of uniform spaces (Xn)n∈ω is

(1) homeomorphic to (an open subset of) an LF-space if for every n ∈ ω the space Xn is homeomorphic to (an open subset of) a Hilbert
space and Xn is lz-complemented in Xn+1;

(2) (locally) homeomorphic to an LF-space if for every n ∈ ω the space Xn is (locally) homeomorphic to a Hilbert space and Xn is
(locally) lz-complemented in Xn+1;

(3) homeomorphic to an LF-space if for every n ∈ ω the uniform space Xn is metrizable, is homeomorphic to a Hilbert space and Xn is
locally z-complemented in Xn+1 .

The last statement of this theorem does not follow from Theorems 1.3 and 1.5. It will be proved in a more general
context of typical model spaces in Theorem 9.1. Because of the lack of the Open Embedding Theorem for LF-manifolds,
we distinguish between LF-manifolds and open subspaces of LF-spaces. That is why we included two separate items (1)
and (2) in Theorem 1.6. It should be mentioned that the topological structure of open subspaces of LF-spaces is quite well
understood, which cannot be said about LF-manifolds, see [18,19].

Theorem 1.3 will be proved in Section 3. In Section 2 we recall the necessary information on uniform direct limits. In
Section 4 we study reduced products of pointed spaces and prove an important Lemma 4.1 on regular homeomorphisms
of pairs. In Section 5 we introduce the notion of a typical model space so that manifolds modeled on such spaces have
many common properties with Hilbert manifolds. In Section 6 we shall prove two lemmas about complemented subsets
in metrizable uniform spaces that are homeomorphic to typical model spaces. In Section 7 we study small box-product
of locally compact spaces and show that for any sequence (Xi)i∈ω of locally compact ANR-spaces the small box-product
Q ×�i∈ω Xi is locally homeomorphic to Q ×R

∞ where Q = [0,1]ω is the Hilbert cube. In Section 8 we apply this result to
recognize the small box-products that are (locally) homeomorphic to small box-products �n∈ω En of typical model spaces.
In Section 9 we apply the results about small box-products and prove a criterion for recognizing uniform direct limits that
are (locally) homeomorphic to small box-products �n∈ω En of typical model spaces.

2. Uniform direct limits

In this section we recall the necessary information on uniform direct limits. By a tower of uniform spaces we shall
understand an increasing sequence

X0 ⊂ X1 ⊂ X2 ⊂ · · ·
of uniform spaces (so, the uniformity of each space Xn coincides with the uniformity inherited from the uniform space
Xn+1).

The uniform direct limit u-lim−→ Xn of a tower of uniform spaces (Xn)n∈ω is the union X = ⋃
n∈ω Xn endowed with the

largest uniformity making the identity inclusions Xn → X , n ∈ ω, uniformly continuous. The topology and the uniformity of
the uniform direct limits u-lim−→ Xn has been described in [6].

By Proposition 5.4 of [6], for a tower (Xn)n∈ω of locally compact uniform spaces the identity map t-lim−→ Xn → u-lim−→ Xn
is a homeomorphism. This means that the topology of uniform direct limit on

⋃
n∈ω Xn coincides with the topology of

topological direct limit.
A map f : X → Y between uniform spaces is called regular at a subset A ⊂ X if for any entourages U ∈ UY and V ∈

UX there is an entourage W ∈ UX such that for each point x ∈ B(A, W ) there is a point a ∈ A such that (x,a) ∈ V and
( f (x), f (a)) ∈ U .

The following criterion for recognizing continuous maps between uniform direct limits was proved in Theorem 1.6 of [6].

Proposition 2.1. Let (Xn)n∈ω be a tower of uniform spaces and X = u-lim−→ Xn be its uniform direct limit. A function f : X → Y from
X to a uniform space Y is continuous provided that for every n ∈ N the restriction f |Xn : Xn → Y is continuous and regular at Xn−1 .

Let X, Y be uniform spaces and X0 ⊂ X , Y0 ⊂ X be subspaces. A homeomorphism of pairs h : (X, X0) → (Y , Y0) is called
regular if h(X0) = Y0, h is regular at X0 and h−1 is regular at Y0.

Proposition 2.1 implies a simple criterion for recognizing homeomorphisms between uniform direct limits.

Corollary 2.2. Let (Xn)n∈ω and (Yn)n∈ω be towers of uniform spaces. A bijective function h : u-lim−→ Xn → u-lim−→ Yn is a homeomor-
phism if for every n ∈ ω the restriction h|Xn is a regular homeomorphism of the pairs (Xn+1, Xn) and (Yn+1, Yn).

We shall often use the following fact established in Proposition 5.5 of [6].

Proposition 2.3. For a sequence (Xn)n∈ω of pointed uniform spaces the identity map u-lim�i�n Xi → �n∈ω Xn is a homeomorphism.
−→
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3. Proof of Theorem 1.3

We shall divide the proof of Theorem 1.3 into three lemmas.

Lemma 3.1. Let (Xn)n∈ω be a tower of uniform spaces such that for every n ∈ ω the space Xn is locally Cn-complemented in Xn+1
for some pointed space Cn. Then the set X0 has an open neighborhood U ⊂ u-lim−→ Xn that is homeomorphic to the small box-product
X0 ×�n∈ω Wn for some open neighborhoods Wn ⊂ Cn of the distinguished points ∗Cn .

Proof. For every n ∈ ω the set Xn is locally Cn-complemented in Xn+1. Consequently, for some open neighborhood Wn ⊂ Cn

of ∗Cn there is an open embedding γn : Xn × Wn → Xn+1 such that

(Γ1) for any neighborhood V ⊂ Wn of ∗C there is an entourage U ∈ UXn+1 such that B(Xn, U ) ⊂ γn(Xn × V );
(Γ2) for each entourage U ∈ UXn+1 there is a neighborhood V ⊂ Wn of ∗Cn such that for any x ∈ Xn and c ∈ V we get

γn(x, c) ∈ B(x, U ).

The condition (Γ2) implies that γn(x,∗Cn ) = x for all x ∈ Xn .
If the set Xn is Cn-complemented in Xn+1, then we shall assume that Wn = Cn and γn(Xn × Wn) = Xn+1.
On each space Cn fix a uniformity that generates the topology of Cn and observe that the map γn determines a regular

homeomorphism of the pairs (Xn × Wn, Xn × {∗Cn }) and (γn(Xn × Wn), Xn).
Let U0 = X0 and for every n ∈ ω define an open subset Un+1 ⊂ Xn+1 by the recursive formula Un+1 = γn(Un × Wn).
Let h0 = γ0 : X0 × W0 → U1. For every n ∈ N define a homeomorphism hn : X0 × �i�n W i → Un+1 by the recursive

formula hn(x, c) = γn(hn−1(x), c) where x ∈ X0 ×�i<n W i and c ∈ Wn . It follows that hn|X0 ×�i<n W i = hn−1 and

hn :
(

X0 × �
i�n

W i, X0 × �
i<n

W i

)
→ (Un+1, Un)

is a regular homeomorphism of pairs. By Corollary 2.2 and Proposition 2.3, the bijective map

h =
⋃
n∈ω

hn :
⋃
n∈ω

(
X0 × �

i�n
W i

)
→

⋃
n∈ω

Un

is a homeomorphism between the small box-product X0 ×�n∈ω Wk and the uniform direct limit U = u-lim−→ Un .
We claim that U = u-lim−→ Un is an open subspace of u-lim−→ Xn . First we show that the set U = ⋃

n∈ω Un is open in
X = u-lim−→ Xn .

Given any point x ∈ U , find n ∈ ω such that x ∈ Un . Since the set Un is open in the uniform space Xn , there is an
entourage εn ∈ UXn such that B(x,2εn) ⊂ Un , where 2εn = εn ◦ εn . Let Bn = B(x, εn).

Claim 3.2. There is a sequence (εk)k>n ∈ ∏
k>n UXk of entourages such that for every k > n for the set Bk = B(Bk−1, εk) we have the

inclusion B(Bk, εk) ⊂ Uk.

Proof. For k = n the inclusion B(Bn, εn) = B(x,2εn) ⊂ Un follows from the choice of εn . Assume that for some k � n we
have constructed an entourage εk ∈ UXk such that B(Bk, εk) ⊂ Uk .

Choose an entourage δk+1 ∈ UXk+1 such that X2
k ∩ 3δk+1 ⊂ εk . By the condition (Γ2) there is a neighborhood Vk ⊂ Ck

of the distinguished point ∗Ck such that for every c ∈ Vk and xk ∈ Xk we get γk(xk, c) ∈ B(xk, δk+1). By the condition (Γ1),
there is an entourage εk+1 ∈ UXk+1 such that B(Xk,2εk+1) ⊂ γk(Xk × Vk) and εk+1 ⊂ δk+1. Let us check that the entourage
εk+1 satisfies our requirements.

Consider the set Bk+1 = B(Bk, εk+1) and its εk+1-neighborhood B(Bk+1, εk+1) = B(Bk,2εk+1). We need to show that
B(Bk,2εk+1) ⊂ Uk+1. Take any point y ∈ B(Bk,2εk+1) ⊂ B(Xk,2εk+1) ⊂ γk(Xk × Vk) and find a pair (xk, c) ∈ Xk × Vk
such that y = γk(xk, c). The choice of the neighborhood Vk guarantees that (y, xk) ∈ δk+1. Then xk ∈ Xk ∩ B(y, δk+1) ⊂
Xk ∩ (Bk, δk+1 ◦ 2εk+1) ⊂ Xk ∩ B(Bk,3δk+1) = B(Bk, X2

k ∩ 3δk+1) ⊂ B(Bk, εk) ⊂ Uk and hence y = γk(xk, c) ∈ γk(Uk ×
Wk) = Uk+1. �

Theorem 1.1 of [6] guarantees that the union B∞ = ⋃
k�n Bk is a neighborhood of the point x in u-lim−→ Xn . Since B∞ =⋃

k�n Bk ⊂ ⋃
k�n Uk = U , we see that the point x lies in the interior of U and hence the set U is open in u-lim−→ Xn . Claim 3.2

and the description of the topology of uniform direct limits given in [6, 1.1] guarantee that the topology of the uniform direct
limit on u-lim−→ Un coincides with the subspace topology inherited from u-lim−→ Xn . This completes the proof of the lemma. �

If each subset Xn is Cn-complemented in Xn+1, then Wn = Cn and γn(Xn × Cn) = Xn+1 for all n ∈ ω. By induction we can
prove that Un = Xn for all n ∈ ω and hence the uniform direct limit u-lim−→ Xn = u-lim−→ Un is homeomorphic to X0 ×�n∈ω Cn .
This argument yields the following version of Lemma 3.1.
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Lemma 3.3. Let (Xn)n∈ω be a tower of uniform spaces such that for every n ∈ ω the space Xn is Cn-complemented in Xn+1 for some
pointed topological space Cn. Then the uniform direct limit X = u-lim−→ Xn is homeomorphic to the small box-product X0 ×�n∈ω Cn.

Our final lemma completes the proof of Theorem 1.3.

Lemma 3.4. Let (Xn)n∈ω be a tower of uniform spaces such that for every n ∈ ω the space Xn is locally Cn-complemented in Xn+1
for some pointed space Cn and is locally homeomorphic to X0 × ∏

i<n Ci . Then the space u-lim−→ Xn is locally homeomorphic to X0 ×
�n∈ω Cn.

Proof. Given any point x ∈ u-lim−→ Xn , find a number n ∈ ω with x ∈ Xn . By Lemma 3.1, the point x has an open neighborhood
O (x) that is homeomorphic to the small box-product Xn × �i�n W i for some open neighborhoods W i ⊂ Ci of the distin-
guished points ∗Ci . Since the space Xn is locally homeomorphic to X0 × ∏

i<n Ci , we conclude that Xn ×�i�n W i is locally
homeomorphic to X0 × ∏

i<n Ci ×�i�n Ci = X0 ×�i∈ω Ci . Consequently, x has an open neighborhood, homeomorphic to an
open subset of X0 ×�i∈ω Ci witnessing that X is locally homeomorphic to X0 ×�i∈ω Ci . �
4. Reduced products

In this section we collect the necessary information on reduced products of pointed spaces. This information will be
used in the proofs of Theorems 1.5 and 8.1.

For a pointed space C with distinguished point ∗C we denote by C◦ = C \ {∗C } its complement in C .
The reduced product C � E of a pointed topological space C and a topological space E is the space(

C◦ × E
) ∪ {∗C }

endowed with the smallest topology such that the identity inclusion C◦ × E → C � E is an open topological embedding and
the natural projection pr : C � E → C is continuous. The reduced product C � E is a pointed space with the distinguished
point ∗C�E = ∗C .

If C and E are uniform spaces, then their reduced product C � E carries the smallest uniformity such that the projection
C � E → C is uniformly continuous and for every closed subspace F ⊂ C◦ of C the embedding F × E → C � E is a uniform
homeomorphism.

A map f : X → Y between topological spaces is called a near homeomorphism if for any open cover U of Y there is a
homeomorphism h : X → Y that is U -near to f .

Lemma 4.1. Let M, N, E be metric spaces and C be a pointed metric space. If the projection pr : M ×C◦ × E → M ×C◦ , pr : (x, y, z) →
(x, y), is a near homeomorphism, then for any homeomorphism f : M → N there is a regular homeomorphism of pairs

f̄ : (M × (C � E), M × {∗C�E}) → (
N × C, N × {∗C })

such that f̄ (x,∗C�E ) = ( f (x),∗C ) for all x ∈ M.

Proof. Let dN and dC be the metrics of the metric spaces N and C , respectively. These metrics determine the metric

d
(
(x, y),

(
x′, y′)) = max

{
dN

(
x, x′),dC

(
y, y′)}

on the product N × C . Since the projection pr : M × C◦ × E → M × C◦ is a near homeomorphism and M is homeomorphic
to N , there exists a homeomorphism h : N × C◦ × E → N × C◦ such that

d
(
h(x, c, e),pr(x, c, e)

)
� 1

3
dC (c,∗C ) for all (x, c, e) ∈ N × C◦ × E.

Extend h to a homeomorphism h̄ : N × (C � E) → N × C by letting h̄|N × C◦ = h and h̄|N × {∗C } = id.
The homeomorphism f : M → N induces a homeomorphism f × id : M ×(C � E) → N ×(C � E), f × id : (x, y) → ( f (x), y).
Now consider the homeomorphism f̄ = h̄ ◦ ( f × id) : M × (C � E) → N × C and observe that for each (x, c, e) ∈ M × C◦ ×

E ⊂ M × (C � E) we get

2

3
dC (c,∗C ) � d

(
h̄
(

f (x), c, e
)
, N × {∗C })� d

(
h̄
(

f (x), c, e
)
,
(

f (x),∗C
))

� 4

3
dC (c,∗C ),

which implies that

h̄ : (M × (C � E), M × {∗C�E}) → (
N × C, N × {∗C })

is a regular homeomorphism of pairs. �
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5. Typical model spaces

Theorem 1.5 actually holds in a more general setting, with LF-spaces replaced by small box-products of typical model
spaces.

Definition 5.1. A pointed topological space E is called a typical model space if

(1) E is a topologically homogeneous absolute retract containing a topological copy of the Hilbert cube Q = [0,1]ω;
(2) for any neighborhood U ⊂ E of ∗E there are neighborhoods V , W ⊂ U of ∗E such that W and E \ V are homeomorphic

to E and the boundary ∂V of V is a retract of V and a Z -set in E \ V ;
(3) each contractible E-manifold is homeomorphic to E;
(4) each connected E-manifold M is homeomorphic to an open subset of E;
(5) any homeomorphism h : A → B between Z -sets A, B ⊂ E extends to a homeomorphism h̄ : E → E of E;
(6) for any E-manifold M the projection E × M → M is a near homeomorphism;
(7) for any retract X of an open subset of E the product X × E is homeomorphic to an open subset of E;
(8) for any retract X of an E-manifold and a strong Z -point ∗X ∈ X the reduced product X � E is an E-manifold, homeo-

morphic to X × E .

By an ANR-space we understand a metrizable space X , which is a neighborhood retract in each metric space that contains
X as a closed subspace.

Theory of Hilbert manifolds developed in [9, §IX.7], [16,22–24] yields the following theorem.

Theorem 5.2. Any infinite-dimensional Hilbert space is a typical model space.

Remark 5.3. Many incomplete typical model spaces can be found among absorbing and coabsorbing spaces, see [5] and [10].

We finish this short section by a lemma that will be used in the proof of Theorem 8.1.

Lemma 5.4. Let X be a pointed ANR-space and Y be a pointed topological space. If ∗X is a strong Z -point in X, then (∗X ,∗Y ) is a
strong Z -point in X × Y .

Proof. Given an open cover U of X × Y , find a set U ∈ U that contains the point (∗X ,∗Y ). Choose open sets U X ⊂ X and
U Y ⊂ Y such that (∗X ,∗Y ) ∈ U X × U Y ⊂ U and find a neighborhood V X ⊂ X of ∗X such that V X ⊂ U X . Since the space Y is
completely regular, there is a continuous function λY : Y → [0,1] such that λ−1

Y (0) ⊃ Y \ U Y and λ−1
Y (1) is a neighborhood

of ∗Y . By the same reason, there is a continuous function λX : X → [0,1] such that λ−1
X (0) ⊃ X \ V X and λ−1

X (1) is a
neighborhood of ∗X . Let ΛX be the interior of λ−1

X (1) in X and W X be a neighborhood of ∗X in X such that W X ⊂ ΛX .
Consider the open cover V = {ΛX , U X \ W X , X \ V X } of X . Since X is an ANR, there is an open cover W of X such that any
two W-near maps into X are V-homotopic. Since ∗X is a strong Z -point, there is a map f : X → X such that f is W-near
to idX and ∗X /∈ f (X). By the choice of the cover W , the map f is V-homotopic to idX . Consequently, there is a homotopy
h : X × [0,1] → X such that for every x ∈ X we get h(x,0) = x, h(x,1) = f (x) and h({x} × [0,1]) ⊂ V x for some V x ∈ V .

Now consider the function λ : X × Y → [0,1], λ : (x, y) → λX (x) · λY (y), and the map

g : X × Y → X × Y , g : (x, y) → (
h
(
x, λ(x, y)

)
, y

)
.

Claim 5.5. The map g is U -near to idX×Y .

Proof. Take any pair (x, y) ∈ X × Y . If (x, y) /∈ V X × U Y , then

g(x, y) = (
h
(
x, λ(x, y)

)
, y

) = (
h(x,0), y

) = (x, y)

and hence the singleton {g(x, y), (x, y)} lies in some element of the cover U . Next, assume that (x, y) ∈ V X × U Y . Since h
is a V-homotopy, and h(x,0) = x /∈ X \ V X , h({x} × [0,1]) ⊂ U X . Then

g(x, y) = (
h
(
x, λ(x, y)

)
, y

) ∈ U X × U Y ⊂ U ∈ U

and (x, y) ∈ V X × U Y ⊂ U X × U Y ∈ U ∈ U . �
Consider the neighborhood W ′

X = W X ∩ (X \ f (X)) of ∗X and the neighborhood W = W ′
X × λ−1

Y (1) of (∗X ,∗Y ) in X × Y .

Claim 5.6. The neighborhood W does not intersect g(X × Y ).
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Proof. Fix any point (x, y) ∈ X × Y . If y /∈ λ−1(1), then g(x, y) ∈ X × {y} ⊂ X × (Y \ λ−1(1)) ⊂ (X × Y ) \ W .
So, we assume that y ∈ λ−1(1). If x /∈ V X , then g(x, y) = (x, y) /∈ W . If x = h(x,0) ∈ V X \ ΛX , then h({x} × [0,1]) ⊂

U X \ W X as h is a V-homotopy. In this case g(x, y) ∈ (X \ W X ) × Y ⊂ X × Y \ W .
If x ∈ ΛX , then λ(x, y) = λX (x) · λY (y) = 1 and g(x, y) = ( f (x), y) /∈ W . �
Thus the map g witnesses that (∗X ,∗Y ) is a strong Z -point in X × Y . �

6. Complemented subsets in typical model spaces

In this section we prove two useful lemmas about complemented subsets in metrizable uniform spaces that are locally
homeomorphic to typical model spaces.

Lemma 6.1. Let C be a pointed topological space and A be a C-complemented subset of a metrizable uniform space X. If X is an
E-manifold for some typical model space E, then A is C � E-complemented in X.

Proof. Since A is C-complemented in X , there is a homeomorphism γ : A × C → X satisfying the conditions (1) and (2) of
Definition 1.2. By our hypothesis, the uniform space X is metrizable and hence its uniformity is generated by some bounded
metric ρX . Since X is homeomorphic to the product A × C , the space C is metrizable, so we can choose a metric ρC � 1
that generates the topology of C . Denote by UC the uniformity on C generated by the metric ρC .

By induction construct a sequence of entourages (Un)n∈ω ∈ Uω
X and (Vn)n∈ω ∈ Uω

C such that U0 = X × X , V 0 = C × C and
for every n ∈N the following conditions are satisfied:

(1) B(A, Un) ⊂ γ (A × B(∗C , Vn−1));
(2) γ (a, c) ∈ B(a, Un) for each a ∈ A and c ∈ B(∗C , Vn);
(3) Un ◦ Un ◦ Un ⊂ Un−1 = U−1

n−1 ⊂ {(x, x′) ∈ X2: ρX (x, x′) � 2−n+1};

(4) Vn ◦ Vn ◦ Vn ⊂ Vn−1 = V −1
n−1 ⊂ {(c, c′) ∈ C2: ρC (c, c′) � 2−n+1}.

By Theorem [15, 8.1.10], there are pseudometrics dX and dC on X and C , respectively, such that for every n ∈ ω

(5) {(x, x′) ∈ X2: dX (x, x′) < 2−n} ⊂ Un ⊂ {(x, x′) ∈ X2: dX (x, x′) � 2−n} and
(6) {(c, c′) ∈ C2: dC (c, c′) < 2−n} ⊂ Vn ⊂ {(c, c′) ∈ C2: dC (c, c′)� 2−n}.

The conditions (3), (5) and (4), (6) imply that dX and dC are metrics generating the uniformities of the corresponding spaces.
For ε > 0 let B X (A, ε) = {x ∈ X: dX (x, A) < ε} and BC (∗C , ε) = {c ∈ C : dC (c,∗C ) < ε}. The conditions (1), (2) and (5), (6)

imply that for every ε > 0 the following two conditions are satisfied:

(7) B(A, ε) ⊂ γ (A × B(∗C ,4ε));
(8) γ (a, c) ∈ B(a,4ε) for each a ∈ A and c ∈ B(∗C , ε).

The metrics dX and dC generate the metric

dAC
(
(a, c),

(
a′, c′)) = max

{
dX

(
a,a′),dC

(
c, c′)}

on the product A × C .
Let C◦ = C \ {∗C }. The space A × C◦ is an E-manifold (being homeomorphic to the open subset γ (A × C◦) of the

E-manifold X ). Consequently, the projection p : A × C◦ × E → A × C◦ is a near homeomorphism and we can choose a
homeomorphism h : A × C◦ × E → A × C◦ such that

dAC
(
h(a, c, e), p(a, c, e)

)
� 1

3
dC (c,∗C ) and dX

(
γ ◦ h(a, c, e), γ ◦ p(a, c, e)

)
� 1

2
dC (c,∗C )

for all (a, c, e) ∈ A × C◦ × E .
Extend h to a homeomorphism h̄ : A × C � E → A × C letting h̄|A × C◦ × E = h and h̄|A × {∗C } = id.
It can be shown that the homeomorphism γ̃ = γ ◦ h̄ : A × C � E → X witnesses that A is C � E-complemented in X . �
Our second lemma reduces the local z-complementability in uniform spaces homeomorphic to typical model spaces to

the E-complementability.

Lemma 6.2. Let A be a retract of a metrizable uniform space X such that X is homeomorphic to some typical model space E. If A is
locally z-complemented in X, then A is E-complemented in X.
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Proof. Assuming that A is locally z-complemented in X , find a z-pointed space C , an open neighborhood V ⊂ C of ∗C and
an open uniform neighborhood U ⊂ X of X such that A is V -complemented in U . It follows that A × V is homeomorphic
to U and hence A × V and V are ANRs. The ANR-property of V can be used to show that the distinguished point ∗C

is a strong Z -point not only in C but also in V . So, we lose no generality assuming that V = C . By Lemma 6.1, the
set A is C � E-complemented in U . By the condition (8) of Definition 5.1, the reduced product C � E is an E-manifold.
Consequently, the distinguished point ∗C�E has a neighborhood in C � E , homeomorphic an open neighborhood U ⊂ E of
the distinguished point ∗E of E . It follows that the set A is locally U -complemented in X . Hence, we can find an open
embedding γ : A × U → X satisfying the condition (1), (2) of Definition 1.2. By the condition (2) of Definition 5.1 the
distinguished point ∗E of U has a neighborhood V ⊂ E such that V ⊂ U , the complement E \ V is homeomorphic to E and
the boundary ∂V = V \ V of V is a retract of V and a Z -set in E \ V .

Since A is a retract of the space X and the spaces X and E \ V are homeomorphic to E , the product A × (E \ V )

is homeomorphic to E , being a contractible E-manifold. Since ∂V is a Z -set in E \ V , the product A × ∂V is a Z -set in
A × (E \ V ).

We claim that the complement M = X \ γ (A × V ) is homeomorphic to E and γ (A × ∂V ) is a Z -set in M . First we show
that M is contractible. Since ∂V is a retract of V , A ×∂V is a retract of A × V and hence γ (A ×∂V ) is a retract of γ (A × V ).
Then M is a retract of X = M ∪γ (A × V ). Since X is contractible, so is its retract M . To see that M is an E-manifold, observe
that M is the union of two open subsets X \ γ (A × V ) and γ (A × (U \ V )), the first of which is open in the E-manifold X
while the second is a topological copy of the E-manifold A × (U \ V ) ⊂ A × (E \ V ). Being a contractible E-manifold, the
space M is homeomorphic to E .

Since ∂V is a Z -set in E \ V , it is a Z -set in U \ V . Then A × ∂V is a Z -set in A × (U \ V ) and γ (A × ∂V ) is a Z -set in
the open subset γ (A × (U \ V )) of M and hence a Z -set in M .

Then γ |A × ∂V is a homeomorphism between the Z -sets A × ∂V and γ (A × ∂V ) is the spaces A × (E \ V ) and M which
are homeomorphic to E . By the condition (5) of Definition 5.1, there is a homeomorphism h : A × (E \ V ) → M such that
h(x) = γ (x) for all x ∈ A ×∂V . Extend the homeomorphism h to a homeomorphism γ̃ : A × E → X letting γ̃ |A × V = γ |A × V
and γ̃ |A × (E \ V ) = h. The homeomorphism γ̃ witnesses that the set A is E-complemented in X . �
7. Small box-products of locally compact spaces

In this section we study the topological structure of small box-products of pointed locally compact ANR-spaces. By
Q = [0,1]ω we denote the Hilbert cube. A pointed space X is called non-isolated if its distinguished point ∗X is not isolated
in X . By a polyhedron we understand a topological space, homeomorphic to the geometric realization of some simplicial
complex.

The following theorem is the main result of this section.

Theorem 7.1. For any sequence (Xn)n∈N of non-isolated pointed locally compact ANR-spaces the small box-product Q × �n∈N Xn is
homeomorphic to the product K × Q ×R

∞ for some locally compact polyhedron K . If each space Xn, n ∈ N, is contractible, then the
small box-product Q ×�n∈N Xn is homeomorphic to Q ×R

∞ .

Proof. Put X0 = Q and instead of the product Q ×�n∈N Xn consider the small box-product �n∈ω Xn . In order to prove that
�n∈ω Xn is a Q × R

∞-manifold, we shall apply Sakai’s characterization [21] of open subspaces of Q × R
∞ , mentioned in

the Introduction.
We can assume that each space Xn carries a uniformity that generates its topology. Since each ANR-space is locally

connected, it suffices to prove the theorem in the case of connected locally compact ANR-spaces Xn . In this case each space
Xn is σ -compact and so is each finite product �i<n Xi . Then (�i�n Xi) is a tower of locally compact σ -compact uniform
spaces. By Propositions 5.4 and 5.5 of [6] the identity maps

t-lim−→ �
i�n

Xi → u-lim−→ �
i�n

Xi → �
n∈ω

Xn

are homeomorphisms.
Taking into account that each finite product �i�n Xi is locally compact and σ -compact, we can show that the topological

direct limit t-lim−→�i�n Xi is a kω-space, which means that it can be written as a topological direct limit of a tower of compact
metrizable spaces. Now the Sakai’s characterization [21] will imply that �n∈ω Xi is homeomorphic to an open subset of the
space Q × R

∞ as soon as we show that each embedding f : B → �n∈ω Xi defined on a closed subset B of a compact
metrizable space A extends to an embedding f̄ : O (B) →�n∈ω Xi of some neighborhood O (B) of B in A.

Since f (B) is a compact subset of the topological direct limit t-lim−→�i�n Xi , there is n ∈ N such that f (B) ⊂ �i<n Xi .

Since �i<n Xi is an ANR, the map f : B → �i<n Xi admits a continuous extension f̄ : O (B) → �i<n Xi to some closed
neighborhood O (B) of B in A.

By the ANR-Theorem for Q-manifolds [13, 44.1], the product �i<n Xi = Q × �1�i<n Xi is a Q -manifold and so is the
product [0,1] ×�i<n Xi . Identify �i<n Xi with the Z -set {0} ×�i<n Xi in [0,1] ×�i�n Xi . By Theorem 18.2 of [13], the map
f̄ : O (B) →�i<n Xi can be approximated by an embedding f̃ : O (B) → [0,1] ×�i<n Xi such that f̃ |B = f .
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Since Xn is a non-isolated pointed space, there is an embedding γ : [0,1] → Xn such that γ (0) = ∗X . The embedding γ
induces the embedding

γ̃ : [0,1] × �
i<n

Xi → �
i�n

Xi, γ̃ : (t, �x) → (�x, γ (t)
)
.

Then g = γ̃ ◦ f̃ : O (B) → �i�n Xi ⊂ �i∈ω Xi is a required embedding that extends the embedding f . By Sakai’s characteriza-
tion of Q ×R

∞-manifolds [21], �i∈ω Xi is a Q ×R
∞-manifold and by the Triangulation Theorem [21] for Q ×R

∞-manifolds,
the Q ×R

∞-manifold �i∈ω Xi is homeomorphic to K × Q ×R
∞ for some locally compact polyhedron K .

If each space Xn is contractible, the product �i<n Xi is an absolute retract. In this case, we can assume that O (B) = A
and then the embedding f : B → �i∈ω Xi extends to an embedding f̄ : A → �i∈ω Xi . By Sakai’s characterization [21] of the
space Q ×R

∞ , the kω-space �i∈ω Xi is homeomorphic to Q ×R
∞ . �

8. The topological structure of some small box-products

In this section we prove a “typical” version of Theorem 1.5.

Theorem 8.1. Let (Xn)n∈ω be a sequence of pointed topological spaces such that for every n ∈ ω the finite product
∏

i�n Xn is home-
omorphic to (an open subspace of) some typical model space En. Assume that for infinitely many numbers n ∈ ω the space Xn is
lz-pointed. Then the small box-product �n∈ω Xn is homeomorphic to (an open subset of) the small box-product �n∈ω En.

Proof. Let

L = {n ∈ N: Xn is l-pointed} and Z = {n ∈N: Xn is z-pointed}.
Assume that for every n ∈ ω the finite product

∏
i�n Xn is homeomorphic to an open subspace of some typical model

space En . Then each space Xn is metrizable, so its topology is generated by some metrizable uniformity UXn .

Claim 8.2. For every n ∈ N the product En−1 × En is homeomorphic to En.

Proof. By our assumption, the product
∏

i�n Xi is locally homeomorphic to the model space En . Consequently, there are
non-empty open sets U ⊂ ∏

i<n Xi and V ⊂ Xn whose product U × V is homeomorphic to an open subset of En . Since∏
i<n Xi is locally homeomorphic to En−1, the open set U contains a non-empty open set W that is homeomorphic to an

open subset of the model space En−1. Since each non-empty open set of En−1 contains an open subset homeomorphic to
En−1 we lose no generality assuming that the set W is homeomorphic to En−1. Then W × V is homeomorphic to an open
subset of En and hence En−1 is homeomorphic to the retract W of the En-manifold W × V . By the conditions (3) and (7)
of Definition 5.1, the product En−1 × En , being a contractible En-manifold, is homeomorphic to En . �
Claim 8.3. The small box-product �n∈ω Xn is homeomorphic to �n∈ω Xn ×�n∈Z En.

Proof. Let Y0 = X0 and for every n ∈N let

Yn =
{

Xn if n /∈ Z ,

Xn � En if n ∈ Z .

By Proposition 5.5 of [6], the small box-products �n∈ω Xn and �n∈ω Yn can be identified with the uniform direct limits of
the towers (�i<n Xi)n∈ω and (�i<n Yi)n∈ω , respectively.

For every n ∈ Z let X◦
n = Xn \ {∗Xn }. By our assumption, the finite product �i�n Xi is homeomorphic to an open subset

of the typical model space En . Then the space X◦
n × �i<n Xi , being an open subset of �i�n Xi also is homeomorphic to an

open subset of En . Since En is a typical model space, the projection

pr : En × X◦
n × �

i<n
Xi → X◦

n × �
i<n

Xi, pr : (e, x, �x) → (x, �x),
is a near homeomorphism.

Let h0 : X0 → Y0 be the identity homeomorphism. Using Lemma 4.1, by induction we can construct a sequence of regular
homeomorphisms of pairs

hn :
(
�

i�n
Xi, �

i<n
Xi

)
→

(
�

i�n
Yi, �

i<n
Yi

)
such that hn|�i<n Xi = hn−1. By Corollary 2.2, the map h : �n∈ω Xn → �n∈N Yn defined by h|�i�n Xi = hn is a homeomor-
phism.
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By the condition (8) of Definition 5.1, for every n ∈ Z the reduced product Xn � En is homeomorphic to Xn × En .
Consequently, we get the following chain of homeomorphisms:

�
n∈ω

Xn ∼= �
n∈ω

Yn = �
n∈ω\Z

Yn × �
n∈Z

Yn = �
n∈ω\Z

Xn × �
n∈Z

(Xn � En)

∼= �
n∈ω\Z

Xn × �
n∈ω

(Xn × En) = �
n∈ω

Xn × �
n∈Z

En. �
Claim 8.4. If the set Z is infinite, then the small box-product �n∈ω Xn is homeomorphic to an open subspace of the small box-product
�n∈ω En.

Proof. Let Z = {nk: k ∈ ω} be the increasing enumeration of the infinite set Z . It will be convenient to assume that
n−1 = −1. For every k ∈ ω let Yk = ∏

nk−1<i�nk
Xi . By Claim 8.3, the small box-product �n∈ω Xn is homeomorphic to

�k∈ω(Yk × Enk ). Since the finite product
∏

i�nk
Xi is homeomorphic to an open subset of Enk , the space Yk is a retract

of an open subset of the typical model space Enk and hence the product Yk × Enk is homeomorphic to an open subset Unk

of Enk . If the space Yk is contractible, then Unk , being a contractible Enk -manifold, is homeomorphic to Enk . In this case we
can assume that Unk = Enk . Claim 8.2 implies that the product

∏
nk−1<i�nk

Ei is homeomorphic to Enk and hence the open
set Unk is homeomorphic to some open set Wnk in

∏
nk−1<i�nk

Ei (which coincides with
∏

nk−1<i�nk
Ei if Unk = Enk ). The

space Yk × Enk , being homeomorphic to an open subset Unk of Enk , is homeomorphic to the open subset Wnk of the product∏
nk−1<i�nk

Ei .
Now we see that the small box-product �n∈ω Xn is homeomorphic to the small box-product �k∈ω(Yk × Enk ) and the

latter small box-product is homeomorphic to the small box-product W = �k∈ω Wnk , which is an open subset of the small
box-product �n∈ω En . This finishes the proof of Claim 8.4. �

If each finite product
∏

i�n Xn is homeomorphic to En , then each space Xi , i ∈ ω, is contractible and so are the spaces Yk ,
k ∈ ω. In this case Uk = Enk and W = �n∈ω En . Therefore we have proved the following modification of Claim 8.4.

Claim 8.5. If the set Z is infinite, and each finite product
∏

i�n Xi is homeomorphic to the model space En, then the small box-product
�n∈ω Xn is homeomorphic to �n∈ω En.

Claims 8.4 and 8.5 prove Theorem 8.1 in case of infinite set Z . If the set L is infinite, then Theorem 8.1 follows from
Claims 8.7 and 8.8 proved below.

Claim 8.6. If the set L is infinite and each space Xn, n ∈ ω, is connected, then the small box-product �n∈ω Xn is homeomorphic to an
open subspace of �n∈ω En.

Proof. Let A ⊂ L be an infinite subset such that for each n ∈ A we get 0 < n − 1 /∈ A. This condition implies that the
complement N \ A is infinite.

By Theorem 7.1, the small box-product Q × �n∈A Xn is homeomorphic to K × Q × R
∞ for some connected locally

compact polyhedron K . If each space Xn is contractible, then we can assume that K is a singleton. Theorem 7.1 also implies
that the space Q ×R

∞ is homeomorphic to the small box-product Q ×�n∈ω I where I = [0,1] is the closed interval with
the distinguished point 0.

First we show that for every n ∈ ω the product K × En is homeomorphic to an open subset of En . Indeed, by the condition
(1), (3) and (7) of Definition 5.1, the Hilbert cube Q is a retract of the typical model space En and the product En × Q ×
[0,1] is homeomorphic to En . The locally compact polyhedron K is connected and hence admits a closed embedding into
Q × [0,1). Then K is a neighborhood retract of the space En × Q × [0,1), which is homeomorphic to an open subspace
of En . By the condition (7) of Definition 5.1, En × K is homeomorphic to an open subset of En . By Definition 5.1(7), for every
open subset U ⊂ En the product U × En is homeomorphic to U and hence U × K is homeomorphic to U × En × K and the
latter space is homeomorphic to an open subset of the square En × En , which is homeomorphic to En (being a contractible
En-manifold).

Since X0 is homeomorphic to an open subset of E0, the product X0 × K is homeomorphic to an open subset of the
model space E0. Since X0 is homeomorphic to X0 × E0 and E0 is homeomorphic to E0 × Q , the space X0 is homeomorphic
to X0 × Q . So, we get the following chain of homeomorphisms

�
n∈ω

Xn ∼= X0 × Q × �
n∈N Xn ∼= X0 × �

n∈N\A
Xn ×

(
Q × �

n∈A
Xn

)
∼= X0 × �

n∈N\A
Xn ×

(
K × Q × �

n∈ω
I

) ∼= X0 × K × Q × �
n∈N\A

(Xn × I)

∼= X0 × K × �
n∈N\A

(Xn × I).

By Lemma 5.4, for every n ∈N \ A the distinguished point (∗Xn ,0) of the pointed space Xn × I is a strong Z -point.
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Then by Claim 8.4, the small box-product �n∈ω Xn ∼= K × X0 × �n∈N\A(Xn × I) is homeomorphic to an open subset of
�n∈ω\A En . By Claim 8.2, for every n ∈ N \ A the space En is homeomorphic to En × En−1. Consequently, the small box-
product �n∈ω\A En is homeomorphic to �n∈ω En and thus �n∈ω Xn is homeomorphic to an open subspace of �n∈ω En . �

By analogy we can prove:

Claim 8.7. If the set L is infinite, and every finite product
∏

i�n Xn is contractible, then the small box-product �n∈ω Xn is homeomorphic
to �n∈ω En.

Our final claim finishes the proof of Theorem 8.1.

Claim 8.8. If the set L is infinite, then the small box-product �n∈ω Xn is homeomorphic to an open subspace of the small box-product
�n∈ω En.

Proof. For every n ∈ ω denote by κn the number of connected components of the space Xn . It is clear that the finite product∏
i�n Xi has

∏
i�n κi many connected components. Since

∏
i�n Xi is homeomorphic to an open subset of En , the model

space En contains a family Un consisting of
∏

i�n κi many pairwise disjoint non-empty open subsets. Since each non-empty
open subset of En contains an open subset homeomorphic to En , we can assume that each set U ∈ Un is homeomorphic
to En . Since En is topologically homogeneous, we can assume that its distinguished point lies in the union Un = ⋃

Un . It
follows that U = �n∈ω Un is an open subset of �n∈ω En and each connected component of U is homeomorphic to �n∈ω En .
Observe that the spaces �n∈ω Xn and �n∈ω Un consist of κ = supn∈ω

∏
i�n κi many connected components. So, we can

choose a bijective map γ assigning to each connected component of �n∈ω Xn a connected component of the space �n∈ω Un .
By Claim 8.6, each connected component C of �n∈ω Xn is homeomorphic to an open subset of �n∈ω En . So, we can define
an open topological embedding fC : C → γ (C) of C into the connected component γ (C) of the small box-product �n∈ω Un .
Then the union f = ⋃

C fC :�n∈ω Xn →�n∈ω Un ⊂ �n∈ω En is a required open embedding of �n∈ω Xn into �n∈ω En . �
9. Recognizing the topology of some uniform direct limits

In this section we prove a “typical” version of Theorem 1.6.

Theorem 9.1. Let (En)n∈ω be a sequence of typical model spaces. The uniform direct limit u-lim−→ Xn of a tower of uniform spaces
(Xn)n∈ω is

(1) homeomorphic to (an open subset of) �n∈ω En if each space Xn is lz-complemented in Xn+1 and Xn is homeomorphic to (an open
subset of) the model space En;

(2) (locally) homeomorphic to �n∈ω En if each space Xn (locally) lz-complemented in Xn+1 and Xn is (locally) homeomorphic to En;
(3) homeomorphic to �n∈ω En if each uniform space Xn is metrizable, homeomorphic to En and is locally z-complemented in Xn+1 .

Proof. (1) Assume that for every n ∈ ω the space Xn is lz-complemented in Xn+1 and is homeomorphic to (an open subset
of) the model space En+1. Then Xn is Cn-complemented in Xn+1 for some lz-pointed space Cn . By Theorem 1.3, the uniform
direct limit u-lim−→ Xn is homeomorphic to the small box-product X0 ×�n∈ω Cn .

The Cn-complementedness of Xn in Xn+1 implies that the space Xn+1 is homeomorphic to the product Xn × Cn . Contin-
uing by induction we can prove that Xn+1 is homeomorphic to X0 × ∏

i�n Cn . Then the latter product is homeomorphic to
(an open subset of) En+1 and we can apply Theorem 8.1 to prove that X0 × �n∈ω Xn is homeomorphic to (an open subset
of) the small box-product �n∈ω En .

(2) Now assume that for every n ∈ ω the space Xn is locally lz-complemented in Xn+1 and is locally homeomorphic
to En . We need to show that each point x ∈ u-lim−→ Xn has an open neighborhood homeomorphic to an open subset of
�n∈ω En . Find a number n ∈ ω with x ∈ Xn . By Lemma 3.1, the point x has an open neighborhood which is homeomorphic
to the small box-product Xn × �i�n W i for some open neighborhoods W i ⊂ Ci of the distinguished points ∗Ci . It follows
from the proof of Lemma 3.1 that for every m � n the product Xn × ∏

n�i�m W i is homeomorphic to an open subset of
Xn+1 and hence is locally homeomorphic to En+1. Then Theorem 8.1 guarantees that the small box-product Xn × �i�n W i
is locally homeomorphic to �i�n Ei . Consequently, the point x has a neighborhood O (x) that is homeomorphic to an open
subset of �i�n Ei .

Repeating the argument of Claim 8.2, we can prove that for every k ∈ N the model space Ek is homeomorphic to
Ek−1 × Ek . Then En−1 is homeomorphic to

∏
i<n Ei and �i�n Ei is homeomorphic to �n∈ω En . Now we see that O (x0)

is homeomorphic to an open subset of �n∈ω En and hence the uniform direct limit u-lim−→ Xn is locally homeomorphic to
�n∈ω En .

(3) Assume that each uniform space Xn is metrizable, homeomorphic to En and is locally z-complemented in Xn+1. By
Lemma 6.2, the set Xn is En+1-complemented in Xn+1 and by the statement (1), X = u-lim−→ Xn is homeomorphic to the
small box-product �n∈ω En . �
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10. Proof of Theorem 1.5

Let (Xn)n∈ω be a sequence of pointed topological spaces such that for every n ∈ ω the finite product
∏

i�n Xi is homeo-
morphic to (an open subset of) a Hilbert space En and for infinitely many numbers n ∈ ω the space Xn is lz-pointed.

We consider three cases.
I. For some m ∈ ω the Hilbert space Em is infinite-dimensional. Then for all n � m the Hilbert spaces En are infinite-

dimensional. In this case we can apply Theorem 8.1 to conclude that the small box-product �n>m Xn is homeomorphic to
(an open subset of) �n>m En . Since the product

∏
i�m Xi is homeomorphic to (an open subset of) the Hilbert space Em , the

small box-product �n∈ω Xn is homeomorphic to (an open subset of) the small box-product �n�m En of Hilbert spaces. The
latter box-product can be identified with the LF-space

⊕
n�m En .

II. All Hilbert spaces En are finite-dimensional and supn∈ω dim(En) = ∞. In this case for every n ∈ ω the finite product∏
i�n Xn , being homeomorphic to an open subset of the finite-dimensional Hilbert space En , is a locally compact σ -compact

finite-dimensional ANR. Then the topological direct limit t-lim−→�i�m Xi of the tower (�i�n Xi)n∈ω can be written as the
topological direct limit of a tower of finite-dimensional metrizable compacta. By Propositions 5.4 and 5.5 of [6], the identity
map

t-lim−→ �
i�n

Xn → �
n∈ω

Xn

is a homeomorphism. Now by Theorem 1.1, the topological equivalence of �n∈ω Xn to (an open subset of) the LF-space
R

∞ will follow as soon as we prove that each embedding f : B → �n∈ω Xn of a closed subset B of a finite-dimensional
metrizable compact space A can be extended to an embedding f̄ of (some neighborhood of B in) the space A.

Since f (B) is a compact subset of the topological direct limit �i∈ω Xi = t-lim−→�i�n Xi , there is n ∈ ω such that f (B) ⊂
�i�n Xi . Since �i�n Xi is an ANR-space, the map f admits a continuous extension f̄ : O (B) → �i�n Xi defined on a closed
neighborhood O (B) in A. Since �i�n Xi is homeomorphic to the Hilbert space En , then it is an absolute retract and we can
additionally assume that O (B) = A.

Now consider the quotient space O (B)/B and the corresponding quotient map π : O (B) → O (B)/B . Being metrizable and
finite-dimensional, the compact space O (B)/B admits an embedding e : O (B)/B → I

k for some k such that the distinguished
point B of O (B)/B maps onto the distinguished point (0, . . . ,0) of the cube I

k . Then the map

f̃ : O (B) → I
k ×

∏
i�n

Xi, f̃ : x → (
e ◦ π(x), f̄ (x)

)
,

is a topological embedding.
Consider the set M of all numbers m for which the point ∗Xm is not isolated in the ANR-space Xn . It follows from

supm∈ω dim(Em) = ∞ that the set N is infinite. For every m ∈ M we can find an embedding γm : I→ Xm such that γm(0) =
∗Xm . Since the set M is infinite, we can choose a sequence of numbers m1 < m2 < · · · < mk in M such that m1 > n. Consider
the embedding γ : Ik → ∏k

i=1 Xmk defined by γ : (t1, . . . , tk) → (γm1 (t1), . . . , γmk (tk)).

Identify the product
∏k

i=1 Xmi with the subset{
(xi)

mk
i=n+1 ∈

mk∏
i=n+1

Xi: i /∈ {m1, . . . ,mk} ⇒ xi = ∗Xi

}

of the product
∏mk

i=n+1 Xi and consider the embedding

δ :
(∏

i�n

Xi

)
× I

k →
∏

i�mk

Xi =
∏
i�n

Xi ×
mk∏

i=n+1

Xi, δ : (x, t) → (
x, γ (t)

)
.

Then the composition δ ◦ f̃ : O (B) → ∏
i�mk

Xi ⊂ �i∈ω Xi is a required embedding of O (B) that extends the embedding f .
Now it is legal to apply Theorem 1.1 and conclude that the small box-product �i∈ω Xi is homeomorphic to (an open
subspace of) the LF-space R

∞ .
III. k = supn∈ω dim(En) is finite. Then there is m ∈ ω such that dim(En) = k for all n � m. For every n < m the finite

products �i<n Xi and �i�n Xi are homeomorphic to open subsets of the Euclidean space R
k . By the Brouwer Domain

Preservation Principle [12], the space �i<n Xi is open in �i�n Xi . This implies that the space Xn is discrete and at most
countable. Then the small box-product �n>m Xn is discrete and at most countable. Since the product �i�m Xi is home-
omorphic to an open subset of R

k and R
k contains an open subspace homeomorphic to R

k × ω, the small box-product
�i∈ω Xi =�i�m Xi ×�i>m Xi is homeomorphic to an open subset of Em .

If each finite product
∏

i�n Xi is homeomorphic to the Hilbert space En , then for every n > m the space Xn is a singleton.
Consequently, the small box-product �n∈ω Xi = �i�m Xi is homeomorphic to the finite-dimensional LF-space Em .
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